1
|
Perets EA, Konstantinovsky D, Santiago T, Videla PE, Tremblay M, Velarde L, Batista VS, Hammes-Schiffer S, Yan ECY. Beyond the "spine of hydration": Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures. J Chem Phys 2024; 161:095104. [PMID: 39230381 PMCID: PMC11377083 DOI: 10.1063/5.0220479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Experimental methods capable of selectively probing water at the DNA minor groove, major groove, and phosphate backbone are crucial for understanding how hydration influences DNA structure and function. Chiral-selective sum frequency generation spectroscopy (chiral SFG) is unique among vibrational spectroscopies because it can selectively probe water molecules that form chiral hydration structures around biomolecules. However, interpreting chiral SFG spectra is challenging since both water and the biomolecule can produce chiral SFG signals. Here, we combine experiment and computation to establish a theoretical framework for the rigorous interpretation of chiral SFG spectra of DNA. We demonstrate that chiral SFG detects the N-H stretch of DNA base pairs and the O-H stretch of water, exclusively probing water molecules in the DNA first hydration shell. Our analysis reveals that DNA transfers chirality to water molecules only within the first hydration shell, so they can be probed by chiral SFG spectroscopy. Beyond the first hydration shell, the electric field-induced water structure is symmetric and, therefore, precludes chiral SFG response. Furthermore, we find that chiral SFG can differentiate chiral subpopulations of first hydration shell water molecules at the minor groove, major groove, and phosphate backbone. Our findings challenge the scientific perspective dominant for more than 40 years that the minor groove "spine of hydration" is the only chiral water structure surrounding the DNA double helix. By identifying the molecular origins of the DNA chiral SFG spectrum, we lay a robust experimental and theoretical foundation for applying chiral SFG to explore the chemical and biological physics of DNA hydration.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Pablo E Videla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Matthew Tremblay
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Luis Velarde
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
2
|
Madzharova F, Chatterley AS, Roeters SJ, Weidner T. Probing Backbone Coupling within Hydrated Proteins with Two-Color 2D Infrared Spectroscopy. J Phys Chem Lett 2024:4933-4939. [PMID: 38686860 DOI: 10.1021/acs.jpclett.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The vibrational coupling between protein backbone modes and the role of water interactions are important topics in biomolecular spectroscopy. Our work reports the first study of the coupling between amide I and amide A modes within peptides and proteins with secondary structure and water contacts. We use two-color two-dimensional infrared (2D IR) spectroscopy and observe cross peaks between amide I and amide A modes. In experiments with peptides with different secondary structures and side chains, we observe that the spectra are sensitive to secondary structure. Water interactions affect the cross peaks, which may be useful as probes for the accessibility of protein sites to hydration water. Moving to two-color 2D IR spectra of proteins, the data demonstrate that the cross peaks integrate the sensitivities of both amide I and amide A spectra and that a two-color detection scheme may be a promising tool for probing secondary structures in proteins.
Collapse
Affiliation(s)
- Fani Madzharova
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Konstantinovsky D, Santiago T, Tremblay M, Simpson GJ, Hammes-Schiffer S, Yan ECY. Theoretical basis for interpreting heterodyne chirality-selective sum frequency generation spectra of water. J Chem Phys 2024; 160:055102. [PMID: 38341693 PMCID: PMC10846909 DOI: 10.1063/5.0181718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024] Open
Abstract
Chirality-selective vibrational sum frequency generation (chiral SFG) spectroscopy has emerged as a powerful technique for the study of biomolecular hydration water due to its sensitivity to the induced chirality of the first hydration shell. Thus far, water O-H vibrational bands in phase-resolved heterodyne chiral SFG spectra have been fit using one Lorentzian function per vibrational band, and the resulting fit has been used to infer the underlying frequency distribution. Here, we show that this approach may not correctly reveal the structure and dynamics of hydration water. Our analysis illustrates that the chiral SFG responses of symmetric and asymmetric O-H stretch modes of water have opposite phase and equal magnitude and are separated in energy by intramolecular vibrational coupling and a heterogeneous environment. The sum of the symmetric and asymmetric responses implies that an O-H stretch in a heterodyne chiral SFG spectrum should appear as two peaks with opposite phase and equal amplitude. Using pairs of Lorentzian functions to fit water O-H stretch vibrational bands, we improve spectral fitting of previously acquired experimental spectra of model β-sheet proteins and reduce the number of free parameters. The fitting allows us to estimate the vibrational frequency distribution and thus reveals the molecular interactions of water in hydration shells of biomolecules directly from chiral SFG spectra.
Collapse
Affiliation(s)
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Matthew Tremblay
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Garth J. Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
4
|
Yan ECY, Perets EA, Konstantinovsky D, Hammes-Schiffer S. Detecting Interplay of Chirality, Water, and Interfaces for Elucidating Biological Functions. Acc Chem Res 2023; 56:1494-1504. [PMID: 37163574 PMCID: PMC10344471 DOI: 10.1021/acs.accounts.3c00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chemists have long been fascinated by chirality, water, and interfaces, making tremendous progress in each research area. However, the chemistry emerging from the interplay of chirality, water, and interfaces has been difficult to study due to technical challenges, creating a barrier to elucidating biological functions at interfaces. Most biopolymers (proteins, DNA, and RNA) fold into macroscopic chiral structures to perform biological functions. Their folding requires water, but water behaves differently at interfaces where the bulk water hydrogen-bonding network terminates. A question arises as to how water molecules rearrange to minimize free energy at interfaces while stabilizing the macroscopic folding of biopolymers to support biological function. This question is central to solving many research challenges, including the molecular origin of biological homochirality, folding and insertion of proteins into cell membranes, and the design of heterogeneous biocatalysts. Researchers can resolve these challenges if they have the theoretical tools to accurately predict molecular behaviors of water and biopolymers at various interfaces. However, developing such tools requires validation by the experimental data. These experimental data are scarce because few physical methods can simultaneously distinguish chiral folding of the biopolymers, separate signals of interfaces from the overwhelming background of bulk solvent, and differentiate water in hydration shells of the polymers from water elsewhere.We recently illustrated these very capacities of chirality-sensitive vibrational sum frequency generation spectroscopy (chiral SFG). While chiral SFG theory dictates that the method is surface-specific under the condition of electronic nonresonance, we show the method can distinguish chiral folding of proteins and DNA and probe water structures in the first hydration shell of proteins at interfaces. Using amide I signals, we observe protein folding into β-sheets without background signals from α-helices and disordered structures at interfaces, thereby demonstrating the effect of 2D crowding on protein folding. Also, chiral SFG signals of C-H stretches are silent from single-stranded DNA, but prominent for canonical antiparallel duplexes as well as noncanonical parallel duplexes at interfaces, allowing for sensing DNA secondary structures and hybridization. In establishing chiral SFG for detecting protein hydration structures, we observe an H218O isotopic shift that reveals water contribution to the chiral SFG spectra. Additionally, the phase of the O-H stretching bands flips when the protein chirality is switched from L to D. These experimental results agree with our simulated chiral SFG spectra of water hydrating the β-sheet protein at the vacuum-water interface. The simulations further reveal that over 90% of the total chiral SFG signal comes from water in the first hydration shell. We conclude that the chiral SFG signals originate from achiral water molecules that assemble around the protein into a chiral supramolecular structure with chirality transferred from the protein. As water O-H stretches can reveal hydrogen-bonding interactions, chiral SFG shows promise in probing the structures and dynamics of water-biopolymer interactions at interfaces. Altogether, our work has created an experimental and computational framework for chiral SFG to elucidate biological functions at interfaces, setting the stage for probing the intricate chemical interplay of chirality, water, and interfaces.
Collapse
Affiliation(s)
- Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Ethan A. Perets
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
5
|
Konstantinovsky D, Yan ECY, Hammes-Schiffer S. Characterizing Interfaces by Voronoi Tessellation. J Phys Chem Lett 2023; 14:5260-5266. [PMID: 37265175 PMCID: PMC10344600 DOI: 10.1021/acs.jpclett.3c01159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The chemistry of interfaces differs markedly from that of the bulk. Calculation of interfacial properties depends strongly on the definition of the interface, which can lead to ambiguous results that vary between studies. There is a need for a method that can explicitly define the interfaces and boundaries in molecular systems. Voronoi tessellation offers an attractive solution to this problem through its ability to determine neighbors among specified groups of atoms. Here we discuss three cases where Voronoi tessellation combined with modeling of vibrational sum frequency generation (SFG) spectroscopy yields relevant insights: the breakdown of the air-water interface into clear and intuitive molecular layers, the study of the hydration shell in biological systems, and the acceleration of difficult spectral calculations where intermolecular vibrational couplings dominate. The utility of Voronoi tessellation has broad applications that extend beyond any single type of spectroscopy or system.
Collapse
Affiliation(s)
- Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, CT, USA 06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA 06511
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, CT, USA 06511
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, CT, USA 06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA 06511
| |
Collapse
|
6
|
Konstantinovsky D, Perets EA, Santiago T, Olesen K, Wang Z, Soudackov AV, Yan ECY, Hammes-Schiffer S. Design of an Electrostatic Frequency Map for the NH Stretch of the Protein Backbone and Application to Chiral Sum Frequency Generation Spectroscopy. J Phys Chem B 2023; 127:2418-2429. [PMID: 36916645 PMCID: PMC10409516 DOI: 10.1021/acs.jpcb.3c00217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
We develop an electrostatic map for the vibrational NH stretch (amide A) of the protein backbone with a focus on vibrational chiral sum frequency generation spectroscopy (chiral SFG). Chiral SFG has been used to characterize protein secondary structure at interfaces using the NH stretch and to investigate chiral water superstructures around proteins using the OH stretch. Interpretation of spectra has been complicated because the NH stretch and OH stretch overlap spectrally. Although an electrostatic map for water OH developed by Skinner and co-workers was used previously to calculate the chiral SFG response of water structures around proteins, a map for protein NH that is directly responsive to biological complexity has yet to be developed. Here, we develop such a map, linking the local electric field to vibrational frequencies and transition dipoles. We apply the map to two protein systems and achieve much better agreement with experiment than was possible in our previous studies. We show that couplings between NH and OH vibrations are crucial to the line shape, which informs the interpretation of chiral SFG spectra, and that the chiral NH stretch response is sensitive to small differences in structure. This work increases the utility of the NH stretch in biomolecular spectroscopy.
Collapse
Affiliation(s)
- Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| | - Ethan A. Perets
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
- Current Address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Kristian Olesen
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Zhijie Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | | | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
7
|
Direct observation of long-range chirality transfer in a self-assembled supramolecular monolayer at interface in situ. Nat Commun 2022; 13:7737. [PMID: 36517528 PMCID: PMC9750980 DOI: 10.1038/s41467-022-35548-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the interest in the origin of life and the need to synthesize new functional materials, the study of the origin of chirality has been given significant attention. The mechanism of chirality transfer at molecular and supramolecular levels remains underexplored. Herein, we study the mechanism of chirality transfer of N, N'-bis (octadecyl)-L-/D-(anthracene-9-carboxamide)-glutamic diamide (L-/D-GAn) supramolecular chiral self-assembled at the air/water interface by chiral sum-frequency generation vibrational spectroscopy (chiral SFG) and molecular dynamics (MD) simulations. We observe long-range chirality transfer in the systems. The chirality of Cα-H is transferred first to amide groups and then transferred to the anthracene unit, through intermolecular hydrogen bonds and π-π stacking to produce an antiparallel β-sheet-like structure, and finally it is transferred to the end of hydrophobic alkyl chains at the interface. These results are relevant for understanding the chirality origin in supramolecular systems and the rational design of supramolecular chiral materials.
Collapse
|
8
|
Konstantinovsky D, Perets EA, Santiago T, Velarde L, Hammes-Schiffer S, Yan ECY. Detecting the First Hydration Shell Structure around Biomolecules at Interfaces. ACS CENTRAL SCIENCE 2022; 8:1404-1414. [PMID: 36313165 PMCID: PMC9615115 DOI: 10.1021/acscentsci.2c00702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 05/15/2023]
Abstract
Understanding the role of water in biological processes remains a central challenge in the life sciences. Water structures in hydration shells of biomolecules are difficult to study in situ due to overwhelming background from aqueous environments. Biological interfaces introduce additional complexity because biomolecular hydration differs at interfaces compared to bulk solution. Here, we perform experimental and computational studies of chiral sum frequency generation (chiral SFG) spectroscopy to probe chirality transfer from a protein to the surrounding water molecules. This work reveals that chiral SFG probes the first hydration shell around the protein almost exclusively. We explain the selectivity to the first hydration shell in terms of the asymmetry induced by the protein structure and specific protein-water hydrogen-bonding interactions. This work establishes chiral SFG as a powerful technique for studying hydration shell structures around biomolecules at interfaces, presenting new possibilities to address grand research challenges in biology, including the molecular origins of life.
Collapse
Affiliation(s)
- Daniel Konstantinovsky
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ethan A. Perets
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ty Santiago
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14260, United States
| | - Luis Velarde
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14260, United States
| | | | - Elsa C. Y. Yan
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Affiliation(s)
- Franz M Geiger
- Northwestern University, Evanston, Illinois 60208, United States
| | | |
Collapse
|
10
|
Perets EA, Olesen KB, Yan ECY. Chiral Sum Frequency Generation Spectroscopy Detects Double-Helix DNA at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5765-5778. [PMID: 35482888 DOI: 10.1021/acs.langmuir.2c00365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many DNA-based technologies involve the immobilization of DNA and therefore require a fundamental understanding of the DNA structure-function relationship at interfaces. We present three immobilization methods compatible with chiral sum frequency generation (SFG) spectroscopy at interfaces. They are the "anchor" method for covalently attaching DNA on a glass surface, the "island" method for dropcasting DNA on solid substrates, and the "buoy" method using a hydrocarbon moiety for localizing DNA at the air-water interface. Although SFG was previously used to probe DNA, the chiral and achiral SFG responses of single-stranded and double-stranded DNA have not been compared systemically. Using the three immobilization methods, we obtain the achiral and chiral C-H stretching spectra. The results introduce four potential applications of chiral SFG. First, chiral SFG gives null response from single-stranded DNA but prominent signals from double-stranded DNA, providing a simple binary readout for label-free detection of DNA hybridization. Second, with heterodyne detection, chiral SFG gives an opposite-signed spectral response useful for distinguishing native (D-) right-handed double helix from non-native (L-) left-handed double helix. Third, chiral SFG captures the aromatic C-H stretching modes of nucleobases that emerge upon hybridization, revealing the power of chiral SFG to probe highly localized molecular structures within DNA. Finally, chiral SFG is sensitive to macroscopic chirality but not local chiral centers and thus can detect not only canonical antiparallel double helix but also other DNA secondary structures, such as a poly-adenine parallel double helix. Our work benchmarks the SFG responses of DNA immobilized by the three distinct methods, building a basis for new chiral SFG applications to solve fundamental and biotechnological problems.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kristian B Olesen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Wang H, Xiong W. Revealing the Molecular Physics of Lattice Self-Assembly by Vibrational Hyperspectral Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3017-3031. [PMID: 35238562 DOI: 10.1021/acs.langmuir.1c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lattice self-assemblies (LSAs), which mimic protein assemblies, were studied using a new nonlinear vibrational imaging technique called vibrational sum-frequency generation (VSFG) microscopy. This technique successfully mapped out the mesoscopic morphology, microscopic geometry, symmetry, and ultrafast dynamics of an LSA formed by β-cyclodextrin (β-CD) and sodium dodecyl sulfate (SDS). The spatial imaging also revealed correlations between these different physical properties. Such knowledge shed light on the functions and mechanical properties of LSAs. In this Feature Article, we briefly introduce the fundamental principles of the VSFG microscope and then discuss the in-depth molecular physics of the LSAs revealed by this imaging technique. The application of the VSFG microscope to the artificial LSAs also paved the way for an alternative approach to studying the structure-dynamic-function relationships of protein assemblies, which were essential for life and difficult to study because of their various and complicated interactions. We expect that the hyperspectral VSFG microscope could be broadly applied to many noncentrosymmetric soft materials.
Collapse
|
12
|
Lin L, Li Y, Qin X, Yu C, Liu M, Zhang Z, Guo Y. In situ nonlinear optical spectroscopic study of the structural chirality in DPPC Langmuir monolayers at the air/water interface. J Chem Phys 2022; 156:094704. [DOI: 10.1063/5.0069860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lu Lin
- Institute of Chemistry CAS, China
| | - Yiyi Li
- Institute of Chemistry CAS, China
| | | | | | - Minghua Liu
- Institute of Chemistry, Chinese Academy of Science, China
| | - Zhen Zhang
- the State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry CAS, China
| | - Yuan Guo
- Institute of Chemistry, Chinese Academy of Sciences, China
| |
Collapse
|