1
|
Kimura M, Yoshioka D, Chang I, Irizawa A, Shibata D, Imada S, Kobayashi Y. Photochromic Color Tuning of Copper-Doped Zinc Sulfide Nanocrystals by Control of Local Dopant Environments. Angew Chem Int Ed Engl 2025; 64:e202423776. [PMID: 39869399 PMCID: PMC11976192 DOI: 10.1002/anie.202423776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands. Several experiments and quantum chemical calculations using model clusters revealed that the color change is determined by the distribution of Cu, which significantly contributes to the coloration, specifically whether it resides on the Zn-rich or S-rich surface. In contrast, particle size and Cu concentration were found to have little effect on the photochromic color. This study expands the diversity of photochromic responses in inorganic NCs and marks an important step toward the development of further advanced photochromic nanomaterials.
Collapse
Affiliation(s)
- Mayu Kimura
- Department of Applied ChemistryCollege of Life SciencesRitsumeikan University1-1-1 NojihigashiKusatsuShiga525-8577Japan
| | - Daisuke Yoshioka
- Department of Applied ChemistryCollege of Life SciencesRitsumeikan University1-1-1 NojihigashiKusatsuShiga525-8577Japan
| | - I‐Ya Chang
- Department of Applied ChemistryCollege of Life SciencesRitsumeikan University1-1-1 NojihigashiKusatsuShiga525-8577Japan
| | - Akinori Irizawa
- Synchrotron Radiation CenterRitsumeikan University1-1-1 NojihigashiKusatsuShiga525-8577Japan
| | - Daisuke Shibata
- Synchrotron Radiation CenterRitsumeikan University1-1-1 NojihigashiKusatsuShiga525-8577Japan
| | - Shin Imada
- Department of Physical SciencesCollege of Science and EngineeringRitsumeikan University1-1-1 NojihigashiKusatsuShiga525-8577Japan
| | - Yoichi Kobayashi
- Department of Applied ChemistryCollege of Life SciencesRitsumeikan University1-1-1 NojihigashiKusatsuShiga525-8577Japan
| |
Collapse
|
2
|
Ma H, Kang Y, Xu W, Shen Y, Yu H, Hu H, Tang X, Xu JF, Zhang X. An Immediate Bacterial-Responsive Supramolecular Thio-Naphthalene Diimide: A Real-Time NIR-II Photothermal Anti-Bacterial. Angew Chem Int Ed Engl 2025:e202505069. [PMID: 40192581 DOI: 10.1002/anie.202505069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/20/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
A new kind of supramolecular thio-naphthalene diimide (SNDI) which can be immediately reduced as supramolecular radical anion by bacteria is reported. The introduction of thiocarbonyl effectively elevates the reduction potential of SNDI, largely increasing the bacteria-response speed in hypoxia. It selectively distinguishes the bacteria with high and low reduction ability in real time. The host-guest complexation of SNDI and cucurbit[7]uril can enhance radical anion quantum yield, ensuring intense NIR-II absorption and realizing high photothermal conversion. The real-time NIR-II photothermal anti-bacteria is successfully carried out. This development will enrich the design of bio-responsive agent with promising future towards actual application.
Collapse
Affiliation(s)
- He Ma
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yushen Kang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weiquan Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuanchen Shen
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huacheng Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao Hu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xingchen Tang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Pei Y, Sukhanov AA, Chen X, Iagatti A, Doria S, Dong X, Zhao J, Li Y, Chi W, Voronkova VK, Di Donato M, Dick B. The Photophysics of Naphthalimide-Phenoselenazine Electron Donor-Acceptor Dyads: Revisiting the Heavy-Atom Effect in Thermally Activated Delayed Fluorescence. Chemistry 2025; 31:e202403542. [PMID: 39607385 DOI: 10.1002/chem.202403542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 11/29/2024]
Abstract
We prepared thermally activated delayed fluorescence (TADF) emitter dyads, NI-PTZ, NI-PTZ-2Br and NI-PSeZ, with naphthalimide (NI) as electron acceptor and 10H-phenothiazine (PTZ) or 10H-phenoselenazine (PSeZ) as electron donor to study the heavy-atom effect on the intersystem crossing (ISC) and reverse ISC (rISC) in the TADF emitters. The delayed fluorescence lifetimes of the dyads containing heavy atoms (τ D F ${{\tau }_{{\rm D}{\rm F}}}$ =5.9 μs for NI-PSeZ andτ D F ${{\tau }_{{\rm D}{\rm F}}}$ =16.5 μs for NI-PTZ-2Br, respectively) are longer than the heavy atom-free counterpart NI-PTZ (τ D F ${{\tau }_{{\rm D}{\rm F}}}$ =2.0 μs). Nanosecond transient absorption (ns-TA) spectral study and the time-resolved electron paramagnetic resonance (TREPR) spectra show the presence of both 3LE and 3CS states. These findings represent solid experimental evidences for the spin-vibronic coupling mechanism of TADF. Moreover, the ns-TA spectra show that the heavy atoms don't have a significant effect since the lifetime of the triplet transient species (1.3 μs for NI-PTZ) is not shortened in their presence (4.5 μs for NI-PSeZ and 5.3 μs for NI-PTZ-2Br). These results show that the previously claimed heavy-atom effect on rISC and TADF is not a universal principle. The femtosecond transient absorption (fs-TA) spectra of the compounds indicate the occurrence of fast charge separation within 1-2 ps, and the charge recombination is slow (>4 ns).
Collapse
Affiliation(s)
- Yuying Pei
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Alessandro Iagatti
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- INO-CNR Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125, Florence (FI), Italy
| | - Sandra Doria
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- ICCOM-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Xin Dong
- Ningbo Sunny Automotive Optech Co. Ltd., No. 27-29 Shunke Road, Ning Bo Shi, Yuyao, 315400, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Yanqin Li
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, No. 58 Renmin Avenue, Meilan District, Haikou, 570228, China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- ICCOM-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D, 93053, Regensburg, Germany
| |
Collapse
|
4
|
Saini C, Gouthaman S, Justin Thomas KR. Theoretical elucidation of the effect of the linkage and orientation of carbazole and naphthalenediimide on the TADF and RTP propensities. Phys Chem Chem Phys 2025; 27:1327-1338. [PMID: 39420783 DOI: 10.1039/d4cp02636e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) are most promising processes for harvesting triplet excitons in organic light-emitting diodes. In this work, the effect of the linkage between the carbazole (Cz) donor (D) and the naphthalenediimide (NDI) acceptor (A) on the TADF and RTP propensities is elucidated using density functional theory computations employing D-A, D-A-D, D-π-A, and D-π-A-π-D structural designs. The effects of the dihedral angle between the donor and acceptor units on the energy difference between the singlet and triplet excited states (ΔEST), the spin-orbit coupling (SOC) constants, and radiative (kr), intersystem crossing (kISC) and reverse intersystem crossing (kRISC) rates are unravelled. The molecules possessing a direct linkage between Cz and NDI exhibit large ΔEST values due to substantial overlap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). However, the insertion of a phenyl spacer between the Cz and NDI units led to disjoint HOMO and LUMO and consequently resulted in a small ΔEST. Furthermore, the presence of two donors with and without a phenyl spacer on NDI resulted in a high-lying triplet state (T2) that is energetically lower than the lowest singlet excited state (S1), hence providing additional channels to the TADF and RTP processes. Also, the orientation of Cz and NDI in the ortho-positions of the phenyl unit resulted in a T1 state with dominant LE character which led to moderate spin-orbit coupling constants and highest kr rates compared to the analogous meta- and para-linked derivatives. Thus, the ortho-derivatives possessed small ΔEST, charge transfer dominated S1, joint holes and electrons for the T1 state, characteristic of local excitation, high SOC, and promising rISC and kr rates. Overall, the phenyl linked derivatives possess TADF characteristics, while the directly linked analogues show RTP propensity.
Collapse
Affiliation(s)
- Chetan Saini
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247667, India.
| | - Siddan Gouthaman
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247667, India.
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247667, India.
| |
Collapse
|
5
|
Schäfer C, Ringström R, Hanrieder J, Rahm M, Albinsson B, Börjesson K. Lowering of the singlet-triplet energy gap via intramolecular exciton-exciton coupling. Nat Commun 2024; 15:8705. [PMID: 39379375 PMCID: PMC11461719 DOI: 10.1038/s41467-024-53122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Organic dyes typically have electronically excited states of both singlet and triplet multiplicity. Controlling the energy difference between these states is a key factor for making efficient organic light emitting diodes and triplet sensitizers, which fulfill essential functions in chemistry, physics, and medicine. Here, we propose a strategy to shift the singlet excited state of a known sensitizer to lower energies without shifting the energy of the triplet state, thus without compromising the ability of the sensitizer to do work. We covalently connect two to four sensitizers in such a way that their transition dipole moments are aligned in a head-to-tail fashion, but, through steric encumbrance, the delocalization is minimized between each moiety. Exciton coupling between the singlet excited states considerably lowers the first excited singlet state energy. However, the energy of the lowest triplet excited state is unperturbed because the exciton coupling strength depends on the magnitude of the transition dipole moments, which for triplets are very small. We expect that the presented strategy of designed intramolecular exciton coupling will be a useful concept in the design of both photosensitizers and emitters for organic light emitting diodes as both benefits from a small singlet-triplet energy gap.
Collapse
Affiliation(s)
- Clara Schäfer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Gothenburg, Sweden
| | - Rasmus Ringström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, London, UK
| | - Martin Rahm
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Gothenburg, Sweden.
| |
Collapse
|
6
|
Ye K, Carbonera D, Liao S, Zhang X, Chen X, Xiao X, Zhao J, Shanmugam M, Li M, Barbon A. Multiple Pathways in the Triplet States Population for a Naphthalenediimide-C 60 Dyad. Chemistry 2024; 30:e202401084. [PMID: 38819870 DOI: 10.1002/chem.202401084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The link of an antenna dye with an electron spin converter, in this case naphthalenediimide and C60, produces a system with a rich photophysics including the detection of more than one triplet state on the long timescale (tens of μs). Beside the use of optical spectroscopies in the ns and in the fs time scale, we used time-resolved Electron Paramagnetic Resonance (TREPR) to study the system evolution following photoexcitation. TREPR keeps track of the formation path of the triplet states through specific spin polarization patterns observed in the spectra. The flexibility of the linker and solvent polarity play a role in favouring either electron transfer or energy transfer processes.
Collapse
Affiliation(s)
- Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35134, Padova, Italy
| | - Sheng Liao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - Mingde Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35134, Padova, Italy
| |
Collapse
|
7
|
Liu L, Liu X, Kurganskii I, Chen X, Gurzadyan GG, Zhao J, Wan Y, Fedin M. Charge Transfer and Intersystem Crossing in Compact Naphthalenediimide-Phenothiazine Triads: Synthesis and Study of the Photophysical Property with Transient Optical and Electron Paramagnetic Resonance Spectroscopic Methods. J Phys Chem B 2024; 128:7237-7253. [PMID: 39016740 DOI: 10.1021/acs.jpcb.4c03145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In order to obtain a long-lived charge separation (CS) state in compact electron donor-acceptor molecular systems, we prepared a series of naphthalenediimide (NDI)-phenothiazine (PTZ) triads, with phenylene as the linker between the donor and acceptor. Conformation restriction is imposed to control the mutual orientation of the NDI and PTZ units by attaching methyl groups on the phenylene linker to tune the electronic coupling between the donor and the acceptor. Moreover, the PTZ moiety was oxidized to sulfoxide to tune the ordering of the CS state and the 3LE state (LE: locally excited state). UV-vis absorption spectra indicate electronic coupling between NDI with the phenylene linker as well as the PTZ units, manifested by the appearance of a charge-transfer (CT) absorption band, whereas this coupling is devoid in the triads with conformation restriction imposed. Fluorescence is strongly quenched in the triads compared to the reference compound, indicating electron transfer upon photoexcitation. Femtosecond transient absorption spectra indicate that the CS takes 0.8 ps, and then the 3LE state is formed by charge recombination in 83 ps. Nanosecond transient absorption (ns-TA) spectra show that the 3NDI state was observed in nonpolar solvents such as cyclohexane (triplet state lifetime: 95.7 μs), whereas the CS state was observed in more polar solvents. The CS state lifetimes are up to 1.2 μs (in toluene). Time-resolved electron paramagnetic resonance spectra of the triads in toluene consist of two types of signals: CS states (narrower signals, ∼10 mT) and 3LE states (broader signals, ∼50 to 200 mT). In the spectra of the triads containing PTZ, the CS state signals dominate, whereas for the triads containing oxidized PTZ, the 3NDI signals (zero-field splitting D ≈ 2000 MHz) prevail, both observations being in agreement with the ns-TA spectral studies. The electron spin polarization phase pattern of the 3NDI states of the triads indicates that the intersystem crossing (ISC) mechanism is spin-orbit charge-transfer ISC. Considering the 3CS state as ion pairs, the electron-exchange energy (J) is determined to be -39 to -59 MHz, and the electron spin dipolar interaction is 83-92 MHz.
Collapse
Affiliation(s)
- Lezhang Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xi Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ivan Kurganskii
- International Tomography Center, SB RAS, Institutskaya Street, 3A, Novosibirsk 630090, Russia
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gagik G Gurzadyan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Matvey Fedin
- International Tomography Center, SB RAS, Institutskaya Street, 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Puchán Sánchez D, Josse P, Plassais N, Park G, Khan Y, Park Y, Seinfeld M, Guyard A, Allain M, Gohier F, Khrouz L, Lungerich D, Ahn HS, Walker B, Monnereau C, Cabanetos C, Le Bahers T. Driving Triplet State Population in Benzothioxanthene Imide Dyes: Let's twist! Chemistry 2024; 30:e202400191. [PMID: 38498874 DOI: 10.1002/chem.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Controlling the formation of photoexcited triplet states is critical for many (photo)chemical and physical applications. Here, we demonstrate that a permanent out-of-plane distortion of the benzothioxanthene imide (BTI) dye promotes intersystem crossing by increasing spin-orbit coupling. This manipulation was achieved through a subtle chemical modification, specifically the bay-area methylation. Consequently, this simple yet efficient approach expands the catalog of known molecular engineering strategies for synthesizing heavy atom-free, dual redox-active, yet still emissive and synthetically accessible photosensitizers.
Collapse
Affiliation(s)
| | - Pierre Josse
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
| | - Nathan Plassais
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
- Department of Physics, University of Seoul, 02504, Seoul, Republic of Korea
| | - Geonwoo Park
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Yeasin Khan
- Department of Chemistry, Kyung Hee University, 730-701 Seoul, Republic of Korea
| | - Yejoo Park
- Department of Chemistry, Kyung Hee University, 730-701 Seoul, Republic of Korea
| | - Mathilde Seinfeld
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
| | - Antoine Guyard
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
| | - Frédéric Gohier
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
| | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
| | - Dominik Lungerich
- Center for Nanomedicine, Institute for Basic Science (IBS), IBS Hall, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyun S Ahn
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Bright Walker
- Department of Chemistry, Kyung Hee University, 730-701 Seoul, Republic of Korea
| | - Cyrille Monnereau
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
| | - Clément Cabanetos
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
- 2BFUEL, IRL CNRS 2002, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Tangui Le Bahers
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
- Institut Universitaire de France, 5 rue Descartes, 75005, Paris, France
| |
Collapse
|
9
|
Bo Y, Zhang H, Li Y, Reva Y, Xie L, Guldi DM. Tuning the Absorption, Fluorescence, Intramolecular Charge Transfer, and Intersystem Crossing in Spiro[fluorene]acridinone. Angew Chem Int Ed Engl 2024; 63:e202313936. [PMID: 38314965 DOI: 10.1002/anie.202313936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
In this work, we prepared a series of electron donor-acceptor systems based on spiro[fluorene-9,7'-dibenzo[c,h]acridine]-5'-one (SFDBAO). Our SFDBAOs consist of orthogonally positioned fluorenes and aromatic ketones. By fine-tuning the substitution of electron-donating pyrenes, the complex interplay among different excited-state decay channels and the overall impact of solvents on these decay channels were uncovered. Placing pyrene, for example, at the aromatic ketones resulted in a profound solvatochromism in the form of a bright charge-transfer (CT) emission spanning from yellow to red-NIR. In contrast, a dark non-emissive CT was noted upon pyrene substitution at the fluorenes. In apolar solvents, efficient triplet-excited state generation was observed for all SFDBAOs. Either charge transfer was concluded to mediate the intersystem crossing (ISC) in the case of pyrene substitution or the El-Sayed rule was applicable when lacking pyrene substitution as in the case of SFABAO. In polar solvents, charge separation is the sole decay upon pyrene substitution. Moreover, competition between ISC and CT lowered the triplet-excited state generation in SFDBAO.
Collapse
Affiliation(s)
- Yifan Bo
- Department of Chemistry and Pharmacy &, Interdisciplinary Center of Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - He Zhang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing, 210023, China
- School of Materials Science and Engineering, Anhui University, Jiulong Road 111, Hefei, 230601, China
| | - Yue Li
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing, 210023, China
| | - Yana Reva
- Department of Chemistry and Pharmacy &, Interdisciplinary Center of Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Linghai Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing, 210023, China
- School of Flexible Electronics (SoFE), Henan Institute of Flexible Electronics (HIFE), Henan University, Mingli Road 379, Zhengzhou, 450046, China
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy &, Interdisciplinary Center of Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| |
Collapse
|
10
|
Wang W, Zhang X, Lin J, Zhu L, Zhou E, Feng Y, Yuan D, Wang Y. A Photoresponsive Battery Based on a Redox‐Coupled Covalent‐Organic‐Framework Hybrid Photoelectrochemical Cathode. Angew Chem Int Ed Engl 2022; 61:e202214816. [DOI: 10.1002/anie.202214816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002, Fujian P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002, Fujian P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108, Fujian P. R. China
| | - Jing Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002, Fujian P. R. China
| | - Lei Zhu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002, Fujian P. R. China
| | - Enbo Zhou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002, Fujian P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yangyang Feng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002, Fujian P. R. China
| | - Daqiang Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002, Fujian P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108, Fujian P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002, Fujian P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108, Fujian P. R. China
| |
Collapse
|
11
|
Isukapalli SVK, Vennapusa SR. Core-Twist Reduces the Triplet Formation Efficiency in Brominated Perylene Diimides. J Phys Chem A 2022; 126:7606-7612. [PMID: 36223553 DOI: 10.1021/acs.jpca.2c04281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bromination is a recent approach to achieve intersystem crossing (ISC) in perylene diimides (PDIs). Herein, we explore the triplet formation dynamics in two tetrabrominated PDI (PDI-Br4) positional isomers with planar (P-PDI) and twisted (T-PDI) π-conjugated frameworks. In contrast to the known effect where the planar geometry favors fluorescence, T-PDI shows higher fluorescence (ϕf = 0.64) than the planar counterpart P-PDI (ϕf = 0.42). P-PDI possesses near-degenerate S1 and T3/T4 states and a larger spin-orbit coupling (SOC). Core-twisting has a pronounced effect on the absorption spectra due to symmetry breaking and would open up multiple ISC pathways, albeit with a lower SOC. Low-energy singlet-triplet state crossings within the Franck-Condon region would facilitate ultrafast triplet generation via the S1-T3/T4 ISC pathway in P-PDI. In comparison, such crossings occur at relatively higher energy, reducing the triplet formation efficiency in T-PDI.
Collapse
Affiliation(s)
- Sai Vamsi Krishna Isukapalli
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram695551, India
| |
Collapse
|
12
|
Panther LA, Guest DP, McGown A, Emerit H, Tareque RK, Jose A, Dadswell CM, Coles SJ, Tizzard GJ, González‐Méndez R, Goodall CAI, Bagley MC, Spencer J, Greenland BW. Solvent‐Free Synthesis of Core‐Functionalised Naphthalene Diimides by Using a Vibratory Ball Mill: Suzuki, Sonogashira and Buchwald–Hartwig Reactions. Chemistry 2022; 28:e202201444. [PMID: 35621283 PMCID: PMC9544761 DOI: 10.1002/chem.202201444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/07/2022]
Abstract
Solvent‐free synthesis by using a vibratory ball mill (VBM) offers the chance to access new chemical reactivity, whilst reducing solvent waste and minimising reaction times. Herein, we report the core functionalisation of N,N’‐bis(2‐ethylhexyl)‐2,6‐dibromo‐1,4,5,8‐naphthalenetetracarboxylic acid (Br2‐NDI) by using Suzuki, Sonogashira and Buchwald–Hartwig coupling reactions. The products of these reactions are important building blocks in many areas of organic electronics including organic light‐emitting diodes (OLEDs), organic field‐effect transistors (OFETs) and organic photovoltaic cells (OPVCs). The reactions proceed in as little as 1 h, use commercially available palladium sources (frequently Pd(OAc)2) and are tolerant to air and atmospheric moisture. Furthermore, the real‐world potential of this green VBM protocol is demonstrated by the double Suzuki coupling of a monobromo(NDI) residue to a bis(thiophene) pinacol ester. The resulting dimeric NDI species has been demonstrated to behave as an electron acceptor in functioning OPVCs.
Collapse
Affiliation(s)
- Lydia A. Panther
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Daniel P. Guest
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Andrew McGown
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Hugo Emerit
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Raysa Khan Tareque
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Arathy Jose
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Chris M. Dadswell
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Simon J. Coles
- UK National Crystallography Service Chemistry University of Southampton University Road Southampton SO17 1BJ UK
| | - Graham J. Tizzard
- UK National Crystallography Service Chemistry University of Southampton University Road Southampton SO17 1BJ UK
| | - Ramón González‐Méndez
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Charles A. I. Goodall
- Faculty of Engineering & Science FES Engineering & Science School Operations University of Greenwich Old Royal Naval College Park Row London SE10 9LS UK
| | - Mark C. Bagley
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - John Spencer
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
- Sussex Drug Discovery Centre School of Life Sciences University of Sussex Falmer, Brighton BN1 9QG UK
| | - Barnaby W. Greenland
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| |
Collapse
|
13
|
El-Zohry AM, Turedi B, Alsalloum A, Maity P, Bakr OM, Ooi BS, Mohammed OF. Ultrafast transient infrared spectroscopy for probing trapping states in hybrid perovskite films. Commun Chem 2022; 5:67. [PMID: 36698014 PMCID: PMC9814551 DOI: 10.1038/s42004-022-00683-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
Studying the charge dynamics of perovskite materials is a crucial step to understand the outstanding performance of these materials in various fields. Herein, we utilize transient absorption in the mid-infrared region, where solely electron signatures in the conduction bands are monitored without external contributions from other dynamical species. Within the measured range of 4000 nm to 6000 nm (2500-1666 cm-1), the recombination and the trapping processes of the excited carriers could be easily monitored. Moreover, we reveal that within this spectral region the trapping process could be distinguished from recombination process, in which the iodide-based films show more tendencies to trap the excited electrons in comparison to the bromide-based derivatives. The trapping process was assigned due to the emission released in the mid-infrared region, while the traditional band-gap recombination process did not show such process. Various parameters have been tested such as film composition, excitation dependence and the probing wavelength. This study opens new frontiers for the transient mid-infrared absorption to assign the trapping process in perovskite films both qualitatively and quantitatively, along with the potential applications of perovskite films in the mid-IR region.
Collapse
Affiliation(s)
- Ahmed M El-Zohry
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Department of Physics, AlbaNova Center, Stockholm University, 10691, Stockholm, Sweden.
| | - Bekir Turedi
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdullah Alsalloum
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Partha Maity
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Boon S Ooi
- Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
14
|
Heavy atom-free triplet photosensitizer based on thermally activated delayed fluorescence material for NIR-to-blue triplet-triplet annihilation upconversion. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|