1
|
Raucci U. Capturing Excited State Proton Transfer Dynamics with Reactive Machine Learning Potentials. J Phys Chem Lett 2025; 16:4900-4906. [PMID: 40344586 DOI: 10.1021/acs.jpclett.5c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Excited state proton transfer is a fundamental process in photochemistry, playing a crucial role in fluorescence sensing, bioimaging, and optoelectronic applications. However, fully resolving its dynamics remains challenging due to the prohibitive computational cost of ab initio simulations and the need for ultrafast experimental techniques with high temporal resolution. Here, we tackle this challenge by using machine learning-driven excited state molecular dynamics simulations. We propose an active learning framework powered by enhanced sampling techniques for constructing a high-quality training set for excited state machine learning potentials, which we then use to map the reaction free energy landscape and capture the photorelaxation dynamics. Using 10-hydroxybenzo[h]quinoline as a test case, our simulations reveal a barrierless excited state proton transfer occurring within ∼50 fs, accompanied by a significant red shift in the emission energy (∼1 eV), in agreement with experimental findings. Furthermore, our results highlight a strong coupling between proton transfer and charge redistribution, which facilitates the rapid tautomerization process. These findings showcase the power of machine learning-driven molecular dynamics in accurately capturing photochemical dynamics while enabling large-scale statistical sampling.
Collapse
Affiliation(s)
- Umberto Raucci
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, Genoa GE 16153, Italy
| |
Collapse
|
2
|
Sülzner N, Jung G, Nuernberger P. A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead. Chem Sci 2025; 16:1560-1596. [PMID: 39759939 PMCID: PMC11697080 DOI: 10.1039/d4sc07148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective. Besides explicating the spectral signatures, transient ion-pair species, and electronic states involved in an ESPT, special emphasis is put on the diversity of methods used for studying photoacids as well as on the effects of the environment on the ESPT, illustrated in detail for 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and the naphthols as examples of prototypical photoacids. The development of exceptionally acidic super-photoacids and magic photoacids is subsequently discussed, which opens the way to applications even in aprotic solvents and provides additional insight into the mechanisms underlying ESPT. In the overview of highlights from theory, a comprehensive picture of the scope of studies on HPTS is presented, along with the general conceptualization of the electronic structure of photoacids and approaches for the quantification of excited-state acidity. We conclude with a juxtaposition of established applications of photoacids together with potential open questions and prospective research directions.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum 44780 Bochum Germany +49 234 32 24523
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes 66123 Saarbrücken Germany +49 681 302 71320
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg 93040 Regensburg Germany +49 941 943 4487
| |
Collapse
|
3
|
Sangeeta, Sil A, Singh V, Bhati R, Guchhait B. Exploring Unusual Confined Chemistry: Excited-State Proton Transfer Reaction in Supported Liquid Membrane with Deep Eutectic Solvents. J Phys Chem B 2024; 128:9805-9814. [PMID: 39340445 DOI: 10.1021/acs.jpcb.4c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Supported liquid membrane (SLM) incorporating ionic liquids (ILs) or deep eutectic solvents (DESs) offers a promising method for ion and (bio)chemical separations and CO2 capture. However, a molecular understanding of whether chemical reactions occur in these confined media is crucial. We report excited-state proton transfer (ESPT) reaction of a photoacid, HPTS, in various DES-based SLMs (pore size ∼280 nm) using steady-state and time-resolved fluorescence spectroscopy. Our findings reveal that, while the ESPT is unfavorable in bulk DESs, it occurs substantially in SLM-containing DESs. Time-resolved area normalized emission spectra (TRANES) show that ESPT time ranges from 2.6 to 7.5 ns and is greatly affected by changes in DES constituents. The results suggest that HPTS interacts with ordered DES structures formed by long-range interfacial effects in membrane pores, making it suitable for ESPT. Furthermore, it is found that the dynamics of solvent relaxation in confined DESs are significantly slower than in bulk liquids. This observation, together with a large red-edge excitation shift, supports the impact of long-range interfacial effects on the DES structure inside membrane pores. Given the task-specific properties of DESs, the incorporation of these solvents into SLM pores can be a useful strategy for investigating new chemical processes.
Collapse
Affiliation(s)
- Sangeeta
- Department of Chemistry, School of Natural Sciences Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Arnab Sil
- Department of Chemistry, School of Natural Sciences Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Vikash Singh
- Department of Chemistry, School of Natural Sciences Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Renu Bhati
- Department of Chemistry, School of Natural Sciences Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Biswajit Guchhait
- Department of Chemistry, School of Natural Sciences Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
4
|
Chettri A, Kaberov LI, Klosterhalfen N, Perera S, Jamshied M, Schacher FH, Dietzek-Ivanšić B. Poly(2-Oxazoline) Amphiphilicity Tunes the Excited-State Proton Transfer of Pyrenol-Based Polyphotoacids. Chemistry 2024; 30:e202401047. [PMID: 38699878 DOI: 10.1002/chem.202401047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
The ability of light to change the properties of light-responsive polymers opens avenues for targeted release of cargo with a high degree of spatial and temporal control. Recently, we established photoacid polymers as light-switchable macromolecular amphiphiles. In these systems, light-induced excited-state proton transfer (ESPT) causes changes in amphilicity. However, as the intermolecular process itself critically depends on the local environment of the photoacid unit within the polymer, the overall amphiphilicity directly influences ESPT. Thus, understanding the impact of the local environment on the photophysics of photoacidic side chains is key to material design. In this contribution we address both thermodynamic and kinetic aspects of ESPT in oxazoline-based amphiphilic polymers with pyrenol-based photoacid side chains. We will compare the effect of polymer design, i. e. statistical and block arrangements, i. e. in poly[(2-ethyl-2-oxazoline)-co-(1-(6/8-hydroxyperene)sulphonylaziridine)] and poly(2-ethyl-2-oxazoline)-block-poly[(2-ethyl-2-oxazoline)-co-(2-(3-(6-hydroxypyrene)sulphonamide)propyl-2-oxazoline), on the intermolecular proton transfer reaction by combining steady-state and time-resolved absorption and emission spectroscopy. ESPT appears more prominent in the statistical copolymer compared to a block copolymer with overall similar pyrenol loading. We hypothesize that the difference is due to different local chain arrangements adopted by the polymers in the two cases.
Collapse
Affiliation(s)
- Avinash Chettri
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Leonid I Kaberov
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Niklas Klosterhalfen
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Sandunika Perera
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Mohammed Jamshied
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
5
|
Cordes MS, Gallagher ES. Molecular Dynamics Simulations of Native Protein Charging via Proton Transfer during Electrospray Ionization with Grotthuss Diffuse H 3O . Anal Chem 2024; 96:4146-4153. [PMID: 38427846 PMCID: PMC11337394 DOI: 10.1021/acs.analchem.3c05089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Unraveling the mechanism by which native proteins are charged through electrospray ionization (ESI) has been the focus of considerable research because observable charge states can be correlated to biophysical characteristics, such as protein folding and, thus, solution conformation. Difficulties in characterizing electrosprayed droplets have catalyzed the use of molecular dynamics (MD) to provide insights into the mechanisms by which proteins are charged and transferred to the gas phase. However, prior MD studies have utilized metal ions, primarily Na+, as charge carriers, even though proteins are primarily detected as protonated ions in the mass spectra. Here, we propose a modified MD protocol for simulating discrete Grotthuss diffuse H3O+ that is capable of dynamically altering amino-acid protonation states to model electrospray charging and gaseous ion formation of model proteins, ubiquitin, and myoglobin. Application of the protocol to the evaporation of acidic droplets enables a molecular perspective of H3O+ coordination and proton transfer to/from proteins, which is unfeasible with the metal charge carriers used in previous MD studies of ESI. Our protocol recreates experimentally observed charge-state distributions and supports the charge residue model (CRM) as the dominant mechanism of native protein ionization during ESI. Additionally, our results suggest that protonation is highly specific to individual residues and is correlated to the formation of localized hydrated regions on the protein surface as droplets desolvate. Considering the use of discrete H3O+ instead of Na+, the developed protocol is a necessary step toward developing a more comprehensive model of protein ionization during ESI.
Collapse
Affiliation(s)
- Michael S Cordes
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
6
|
Ockelmann T, Hoberg C, Buchmann A, Novelli F, Havenith M. Energy Dissipation into the Solvent during Proton Transfer Occurs via Acoustic Phonons. J Phys Chem B 2023; 127:9560-9565. [PMID: 37879121 DOI: 10.1021/acs.jpcb.3c04874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
In photochemistry, rapid energy dissipation into the solvent is mandatory to prevent radiation damages. By optical pump THz spectroscopy, we are able to follow the details of the energy dissipation mechanism upon photoexcitation of the photoacid to the hydrogen-bonded network of water: Based on the frequency maps subsequent to photoexcitation, we propose that energy transfer takes place via propagation of an acoustic phonon. The dissipation into the solvent can be rationalized by an initial first hydration shell response followed by energy dissipation via an acoustic phonon. Surprisingly, for the first 10 ps, the propagation in the water network can be described by a wave packet with a constant group velocity, indicating a long-range correlation. After 300 ps, thermalization in the liquid jet is reached and the THz spectrum reflects a Boltzmann population, corresponding a temperature increase of ΔT = 0.5 °C.
Collapse
Affiliation(s)
- Thorsten Ockelmann
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| | - Claudius Hoberg
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| | - Adrian Buchmann
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| | - Fabio Novelli
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
7
|
Zhao J, Pan C, Zhang Y, Li X, Zhang G, Yang L. Proton penetration mechanism and selective hydrogen isotope separation through two-dimensional biphenylene. RSC Adv 2023; 13:27590-27598. [PMID: 37720838 PMCID: PMC10503273 DOI: 10.1039/d3ra02993j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023] Open
Abstract
Hydrogen isotope separation is of prime significance in various scientific and industrial applications. Nevertheless, the existing technologies are often expensive and energy demanding. Two-dimensional carbon materials are regarded as promising candidates for cost-effective separation of different hydrogen isotopes. Herein, based on theoretical calculations, we have systematically investigated the proton penetration mechanism and the associated isotope separation behavior through two-dimensional biphenylene, a novel graphene allotrope. The unique non-uniform rings with different sizes in the biphenylene layer resemble the topological defects of graphene, serving as proton transmission channels. We found that a proton can readily pass through biphenylene with a low energy barrier in some specific patterns. Furthermore, large kinetic isotope effect ratios for proton-deuteron (13.58) and proton-triton (53.10) were observed in an aqueous environment. We thus conclude that biphenylene would be a potential carbon material used for hydrogen isotope separation. This subtle exploitation of the natural structural specificity of biphenylene provides new insight into the search for materials for hydrogen isotope separation.
Collapse
Affiliation(s)
- Jiahui Zhao
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Changti Pan
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Yue Zhang
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
| | - Xiyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 China
- Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstrasse 400 Dresden 01328 Germany
- Theoretical Chemistry, Technische Universität Dresden Mommsenstr. 13 Dresden 01062 Germany
| |
Collapse
|
8
|
Hoberg C, Talbot JJ, Shee J, Ockelmann T, Das Mahanta D, Novelli F, Head-Gordon M, Havenith M. Caught in the act: real-time observation of the solvent response that promotes excited-state proton transfer in pyranine. Chem Sci 2023; 14:4048-4058. [PMID: 37063810 PMCID: PMC10094129 DOI: 10.1039/d2sc07126f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Photo-induced excited-state proton transfer (ESPT) reactions are of central importance in many biological and chemical processes. Identifying mechanistic details of the solvent reorganizations that facilitate proton transfer however, is challenging for current experimental and theoretical approaches. Using optical pump THz probe (OPTP) spectroscopy and molecular dynamics simulations, we were able to elucidate the ultrafast changes in the solvation environment for three derivatives of pyranine: the photoacid HPTS, the methoxy derivative MPTS, and the photobase OPTS. Experimentally, we find damped oscillations in the THz signal at short times and our simulations enable their assignment to vibrational energy transfer beatings between the photoexcited chromophore and nearby solvent molecules. The simulations of HPTS reveal strikingly efficient sub-ps energy transfer into a particular solvent mode, that is active near 4 THz, and which can provide the requisite energy required for solvent reorganization promoting proton transfer. Similar oscillations are present in the THz signal for all three derivatives, however the signal is damped rapidly for HPTS (within 0.4 ps) and more slowly for MPTS (within 1.4 ps) and OPTS (within 2.0 ps). For HPTS, we also characterize an additional phonon-like propagation of the proton into the bulk with a 140 ps period and an 83 ps damping time. Thermalization of the solvent occurs on a time scale exceeding 120 ps.
Collapse
Affiliation(s)
- Claudius Hoberg
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Justin J Talbot
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - James Shee
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Thorsten Ockelmann
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Debasish Das Mahanta
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Fabio Novelli
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Martin Head-Gordon
- Department of Chemistry, University of California Berkeley California 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| |
Collapse
|
9
|
Nandi R, Amdursky N. The Dual Use of the Pyranine (HPTS) Fluorescent Probe: A Ground-State pH Indicator and an Excited-State Proton Transfer Probe. Acc Chem Res 2022; 55:2728-2739. [PMID: 36053265 PMCID: PMC9494743 DOI: 10.1021/acs.accounts.2c00458] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 01/19/2023]
Abstract
Molecular fluorescent probes are an essential experimental tool in many fields, ranging from biology to chemistry and materials science, to study the localization and other environmental properties surrounding the fluorescent probe. Thousands of different molecular fluorescent probes can be grouped into different families according to their photophysical properties. This Account focuses on a unique class of fluorescent probes that distinguishes itself from all other probes. This class is termed photoacids, which are molecules exhibiting a change in their acid-base transition between the ground and excited states, resulting in a large change in their pKa values between these two states, which is thermodynamically described using the Förster cycle. While there are many different photoacids, we focus only on pyranine, which is the most used photoacid, with pKa values of ∼7.4 and ∼0.4 for its ground and excited states, respectively. Such a difference between the pKa values is the basis for the dual use of the pyranine fluorescent probe. Furthermore, the protonated and deprotonated states of pyranine absorb and emit at different wavelengths, making it easy to focus on a specific state. Pyranine has been used for decades as a fluorescent pH indicator for physiological pH values, which is based on its acid-base equilibrium in the ground state. While the unique excited-state proton transfer (ESPT) properties of photoacids have been explored for more than a half-century, it is only recently that photoacids and especially pyranine have been used as fluorescent probes for the local environment of the probe, especially the hydration layer surrounding it and related proton diffusion properties. Such use of photoacids is based on their capability for ESPT from the photoacid to a nearby proton acceptor, which is usually, but not necessarily, water. In this Account, we detail the photophysical properties of pyranine, distinguishing between the processes in the ground state and the ones in the excited state. We further review the different utilization of pyranine for probing different properties of the environment. Our main perspective is on the emerging use of the ESPT process for deciphering the hydration layer around the probe and other parameters related to proton diffusion taking place while the molecule is in the excited state, focusing primarily on bio-related materials. Special attention is given to how to perform the experiments and, most importantly, how to interpret their results. We also briefly discuss the breadth of possibilities in making pyranine derivatives and the use of pyranine for controlling dynamic reactions.
Collapse
Affiliation(s)
- Ramesh Nandi
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
10
|
Maiti S, Mitra S, Johnson CA, Gronborg KC, Garrett-Roe S, Donaldson PM. pH Jumps in a Protic Ionic Liquid Proceed by Vehicular Proton Transport. J Phys Chem Lett 2022; 13:8104-8110. [PMID: 35997534 PMCID: PMC9442784 DOI: 10.1021/acs.jpclett.2c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The dynamics of excess protons in the protic ionic liquid (PIL) ethylammonium formate (EAF) have been investigated from femtoseconds to microseconds using visible pump mid-infrared probe spectroscopy. The pH jump following the visible photoexcitation of a photoacid (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) results in proton transfer to the formate of the EAF. The proton transfer predominantly (∼70%) occurs over picoseconds through a preformed hydrogen-bonded tight complex between HPTS and EAF. We investigate the longer-range and longer-time-scale proton-transport processes in the PIL by obtaining the ground-state conjugate base (RO-) dynamics from the congested transient-infrared spectra. The spectral kinetics indicate that the protons diffuse only a few solvent shells from the parent photoacid before recombining with RO-. A kinetic isotope effect of nearly unity (kH/kD ≈ 1) suggests vehicular transfer and the transport of excess protons in this PIL. Our findings provide comprehensive insight into the complete photoprotolytic cycle of excess protons in a PIL.
Collapse
Affiliation(s)
- Sourav Maiti
- Central
Laser Facility, RCaH, STFC-Rutherford Appleton
Laboratory, Harwell Science
and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Sunayana Mitra
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Clinton A. Johnson
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kai C. Gronborg
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Sean Garrett-Roe
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Paul M. Donaldson
- Central
Laser Facility, RCaH, STFC-Rutherford Appleton
Laboratory, Harwell Science
and Innovation Campus, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
11
|
Sülzner N, Hättig C. Theoretical Study on the Photoacidity of Hydroxypyrene Derivatives in DMSO Using ADC(2) and CC2. J Phys Chem A 2022; 126:5911-5923. [PMID: 36037028 DOI: 10.1021/acs.jpca.2c04436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work applies the thermodynamic Förster cycle to theoretically investigate the pKa*, i.e., excited-state pKa values of pyranine-derived superphotoacids developed by Jung and co-workers. The latter photoacids are strong enough to transfer a proton to the aprotic solvent dimethyl sulfoxide (DMSO). The Förster cycle provides access to pKa* via the ground-state pKa and the electronic excitation energies. We use the conductor-like screening model for real solvents (COSMO-RS) to compute the ground-state pKa and the correlated wavefunction-based methods ADC(2) and CC2 with the continuum solvation model COSMO to calculate the pKa change upon excitation. A comparison of the calculated UV/Vis absorption and fluorescence emission energies to the experimental results leads us to infer that this approach allows for a proper description of the electronic excitations. In particular, implicit solvation by means of the COSMO model appears to be sufficient for the treatment of these photoacids in DMSO. The calculations confirm the presumption that a charge redistribution from the hydroxy group to the aromatic ring and the electron-withdrawing substituents is the origin of photoacidity for these photoacids. Moreover, the calculations with the continuum solvation model predict that the pKa jump upon excitation decreases with increasing solvent polarity, as rationalized based on the Förster cycle.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
12
|
Konermann L, Kim S. Grotthuss Molecular Dynamics Simulations for Modeling Proton Hopping in Electrosprayed Water Droplets. J Chem Theory Comput 2022; 18:3781-3794. [PMID: 35544700 DOI: 10.1021/acs.jctc.2c00001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Excess protons in water exhibit unique transport properties because they can rapidly hop along H-bonded water wires. Considerable progress has been made in unraveling this Grotthuss diffusion mechanism using quantum mechanical-based computational techniques. Unfortunately, high computational cost tends to restrict those techniques to small systems and short times. Molecular dynamics (MD) simulations can be applied to much larger systems and longer time windows. However, standard MD methods do not permit the dissociation/formation of covalent bonds, such that Grotthuss diffusion cannot be captured. Here, we bridge this gap by combining atomistic MD simulations (using Gromacs and TIP4P/2005 water) with proton hopping. Excess protons are modeled as hydronium ions that undergo H3O+ + H2O → H2O + H3O+ transitions. In accordance with ab initio MD data, these Grotthuss hopping events are executed in "bursts" with quasi-instantaneous hopping across one or more waters. The bursts are separated by regular MD periods during which H3O+ ions undergo Brownian diffusion. The resulting proton diffusion coefficient agrees with the literature value. We apply this Grotthuss MD technique to highly charged water droplets that are in a size regime encountered during electrospray ionization (5 nm radius, ∼17,000 H2O). The droplets undergo rapid solvent evaporation and occasional H3O+ ejection, keeping them at ca. 81% of the Rayleigh limit. The simulated behavior is consistent with phase Doppler anemometry data. The Grotthuss MD technique developed here should be useful for modeling the behavior of various proton-containing systems that are too large for high-level computational approaches. In particular, we envision future applications related to electrospray processes, where earlier simulations used metal cations while in reality excess protons dominate.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Scott Kim
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|