1
|
Jasmin Finkelmeyer S, Presselt M. Tuning Optical Properties of Organic Thin Films through Intermolecular Interactions - Fundamentals, Advances and Strategies. Chemistry 2025; 31:e202403500. [PMID: 39829246 DOI: 10.1002/chem.202403500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
In applications ranging from photon-energy conversion into electrical or chemical forms (such as photovoltaics or photocatalysis) to numerous sensor technologies based on organic solids, the role of supramolecular structures and chromophore interactions is crucial. This review comprehensively examines the critical intermolecular interactions between organic dyes and their impact on optical properties. We explore the range of changes in absorption or emission properties observed in molecular aggregates compared to single molecules. Each effect is dissected to reveal its physicochemical foundations, relevance to different application domains, and documented examples from the literature that illustrate the potential modulation of absorption or emission properties by molecular and supramolecular structural adjustments. This work aims to serve as a concise guide for exploiting supramolecular phenomena in the innovation of novel optical and optoelectronic organic materials, with emphasis on strategic application and exploitation.
Collapse
Affiliation(s)
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| |
Collapse
|
2
|
Sahalianov I, Valiev RR, Ramazanov RR, Baryshnikov G. Neutral vs Charged Luminescent Radicals: Anti-Kasha Emission and the Impact of Molecular Surrounding. J Phys Chem A 2024; 128:5138-5145. [PMID: 38900960 PMCID: PMC11229066 DOI: 10.1021/acs.jpca.4c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Organic luminescent materials attract growing interest as an elegant solution for sustainable and inexpensive light-emitting devices. Most of them are neutral-emitting molecules with an implicit restriction of 25% internal quantum efficiency due to a spin-forbidden nature of the T1 → S0 transition. Utilizing organic radicals allows one to overcome such limits by theoretically boosting quantum yield up to 100%. Recently, different light-emitting radicals based on carbonyl- and carboxyl-substituted benzenes were synthesized and stabilized in different polymer matrices or ionic liquids. While some of them were proved to be suitable luminescent materials, the exact theoretical explanation of the nature of their emission is missing. There are two main hypotheses proposed in the literature. The first one suggests that the origin of luminescence is D2 → D0 anti-Kasha emission from anion radicals, while the second theory is based on D1 → D0 Kasha emission from neutral protonated radicals. In this work, we investigate both hypotheses and compare their derivatives with the available experimental data. We used density functional theory and complete-active space perturbation theory to investigate the absorption and emission properties in various aromatic carbonyl radicals. We found that both emission mechanisms can coexist simultaneously, with a dominant emission contribution made by anion radicals because of better agreement between oscillator strengths and radiative rate constants. Our numerical simulations agree with the experimental data and provide theoretical foundations for the fabrication of next-generation light-emitting devices based on luminescent radicals.
Collapse
Affiliation(s)
- I. Sahalianov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, ITN, Linköping University, 60174 Norrköping,Sweden
| | - R. R. Valiev
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats
1), 00014Helsinki,Finland
| | - R. R. Ramazanov
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats
1), 00014Helsinki,Finland
| | - G. Baryshnikov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, ITN, Linköping University, 60174 Norrköping,Sweden
| |
Collapse
|
3
|
Abatti PP, Decarli NO, Gogoc S, Data P, Bechtold IH, Westphal E, Gallardo H. Shedding Light on Highly Emissive 1,4-Dihydropyrrolo[3,2-b]pyrrole Derivatives: Synthesis and Aggregate-Dependent Emission. Chempluschem 2023; 88:e202300539. [PMID: 37801036 DOI: 10.1002/cplu.202300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Three tetraaryl-1,4-dihydropyrrolo[3,2-b]pyrrole derivatives containing different number of long alkoxy chains (2, 4 and 6) were synthesized, characterized and applied in Organic Light Emitting Diodes (OLEDs). The compounds showed good emission properties with Photoluminescence Quantum Yields (PLQYs) higher than 80 % in solution and 50 % in solid state (thin film). The solvatochromism results revealed a pronounced vibronic emission in methylcyclohexane and toluene, characterized by two distinct sharp emission peaks and a small redshift in the following order: methylcyclohexane>toluene>dichloromethane>tetrahydrofuran>acetonitrile. Also, the compounds formed aggregates with redshifted emission, which can be attributed to excimer formation. This phenomenon was observed in solutions containing 90 % water and with the concentration variation in methylcyclohexane (MCH). Compounds with a greater number of peripheral chains showed the capacity to keep hexagonal columnar organization in films after fast cooling from liquid state. OLEDs fabricated with these compounds showed turn-on voltages lower than 4.0 V, with luminance higher than 1400 cd m-2 , electroluminescence spectra with Full Width at Half Maximum lower than 70 nm and maximum External Quantum Efficiency between 7.2 % and 4.3 %. Overall, this shows that the 1,4-dihydropyrrolo[3,2-b]pyrrole moiety is promising for applications where luminescence is paramount, as in organic light-emitting devices.
Collapse
Affiliation(s)
- Priscila Pazini Abatti
- Department of Chemistry, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima CP 476, CEP, 88040-900, Trindade, Florianópolis/SC, Brazil
| | - Nícolas Oliveira Decarli
- Faculty of Chemistry, Silesian University of Technology, Księdza Marcina Strzody 9, 44-100, Gliwice, Poland
| | - Szymon Gogoc
- Faculty of Chemistry, Silesian University of Technology, Księdza Marcina Strzody 9, 44-100, Gliwice, Poland
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Przemyslaw Data
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego Łódź, 116, 90-543, Lodz, Poland
| | - Ivan H Bechtold
- Department of Physics, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima CP 476, CEP, 88040-900, Trindade, Florianópolis/SC, Brazil
| | - Eduard Westphal
- Department of Chemistry, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima CP 476, CEP, 88040-900, Trindade, Florianópolis/SC, Brazil
| | - Hugo Gallardo
- Department of Chemistry, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima CP 476, CEP, 88040-900, Trindade, Florianópolis/SC, Brazil
| |
Collapse
|
4
|
Lin M, Lu X, Lu G, Jiang J. Photo-responsive Organogels Based on Stilbenedicarboxylic Acid and Octadecylamine. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Martínez-Serrano RD, Cuétara-Guadarrama F, Vonlanthen M, Illescas J, Zhu XX, Rivera E. Facile Obtainment of Fluorescent PEG Hydrogels Bearing Pyrene Groups by Frontal Polymerization. Polymers (Basel) 2023; 15:polym15071687. [PMID: 37050301 PMCID: PMC10097409 DOI: 10.3390/polym15071687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Frontal polymerization (FP) was used to prepare poly(ethylene glycol) methyl ether acrylate (PEGMA) fluorescent polymer hydrogels containing pyrenebutyl pendant groups as fluorescent probes. The polymerization procedure was carried out under solvent-free conditions, with different molar quantities of pyrenebutyl methyl ether methacrylate (PybuMA) and PEGMA, in the presence of tricaprylmethylammonium (Aliquat 336®) persulfate as a radical initiator. The obtained PEGPy hydrogels were characterized by FT-IR spectroscopy, confirming the effective incorporation of the PybuMA monomer into the polymer backbone. The thermal properties of the hydrogels were determined using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). After immersing the hydrogels in deionized water at 25 °C and pH = 7, their swelling behavior was investigated by mass gain at different pH and temperature values. The introduction of PybuMA comonomer into the hydrogel resulted in a decreased swelling ability due to the hydrophobicity of PybuMA. The optical properties of PEGPy were determined by UV-visible absorption and fluorescence spectroscopies. Both monomer and excimer emission bands were observed at 379–397 and 486 nm, respectively, and the fluorescence spectra of the PEGPy hydrogel series were recorded in different solvents to explore the coexistence of monomer and excimer emissions.
Collapse
|
6
|
Nurnabi M, Gurusamy S, Wu JY, Lee CC, Sathiyendiran M, Huang SM, Chang CH, Chao I, Lee GH, Peng SM, Sathish V, Thanasekaran P, Lu KL. Aggregation-induced emission enhancement (AIEE) of tetrarhenium(I) metallacycles and their application as luminescent sensors for nitroaromatics and antibiotics. Dalton Trans 2023; 52:1939-1949. [PMID: 36691828 DOI: 10.1039/d2dt03408e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The self-assembly of tetrarhenium metallacycles [{Re(CO)3}2(μ-dhaq)(μ-N-N)]2 (3a, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene; 3b, N-N = 1,3-bis(1-octylbenzimidazol-2-yl)benzene), (H2-dhaq = 1,4-dihydroxy-9,10-anthraquinone) and [{Re(CO)3}2(μ-thaq)(μ-N-N)]2 (4, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene), (H2-thaq = 1,2,4-trihydroxy-9,10-anthraquinone) under solvothermal conditions is described. The metallacycles 3a,b and 4 underwent aggregation-induced emission enhancement (AIEE) in THF upon the incremental addition of water. TEM images revealed that metallacycle 3a in a 60% aqueous THF solution formed rectangular aggregates with a wide size distribution, while a 90% aqueous THF solution resulted in the formation of a mixture of nanorods and amorphous aggregates due to rapid and abrupt aggregation. UV-vis and emission spectral profiles supported the formation of nanoaggregates of metallacycles 3a,b and 4 upon the gradual addition of water to a THF solution containing metallacycles. Further studies indicated that these nanoaggregates were excellent probes for the sensitive and selective detection of nitro group containing picric acid (PA) derivatives as well as antibiotics.
Collapse
Affiliation(s)
| | - Shunmugasundaram Gurusamy
- PG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin - 628 008, Tamil Nadu, India
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| | - Chung-Chou Lee
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | | - Che-Hao Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Ito Chao
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Veerasamy Sathish
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam - 638 401, India
| | | | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan. .,Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
7
|
Matić J, Tandarić T, Radić Stojković M, Šupljika F, Karačić Z, Tomašić Paić A, Horvat L, Vianello R, Tumir LM. Phenanthridine-pyrene conjugates as fluorescent probes for DNA/RNA and an inactive mutant of dipeptidyl peptidase enzyme. Beilstein J Org Chem 2023; 19:550-565. [PMID: 37153642 PMCID: PMC10155618 DOI: 10.3762/bjoc.19.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Two novel conjugate molecules were designed: pyrene and phenanthridine-amino acid units with a different linker length between the aromatic fragments. Molecular modelling combined with spectrophotometric experiments revealed that in neutral and acidic buffered water solutions conjugates predominantly exist in intramolecularly stacked conformations because of the π-π stacking interaction between pyrene and phenanthridine moieties. The investigated systems exhibited a pH-dependent excimer formation that is significantly red-shifted relative to the pyrene and phenanthridine fluorescence. While the conjugate with a short linker showed negligible spectrophotometric changes due to the polynucleotide addition, the conjugate with a longer and more flexible linker exhibited a micromolar and submicromolar binding affinity for ds-polynucleotides and inactivated a mutant of dipeptidyl peptidase enzyme E451A. Confocal microscopy revealed that the conjugate with the longer linker entered the HeLa cell membranes and blue fluorescence was visualized as the dye accumulated in the cell membrane.
Collapse
Affiliation(s)
- Josipa Matić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tana Tandarić
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marijana Radić Stojković
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Filip Šupljika
- Laboratory for Physical Chemistry and Corrosion, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia
| | - Zrinka Karačić
- Laboratory for Protein Biochemistry and Molecular Modelling, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Tomašić Paić
- Laboratory for Protein Biochemistry and Molecular Modelling, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lucija Horvat
- Laboratory for Molecular Plant Biology and Biotechnology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lidija-Marija Tumir
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Jo S, Kim S, Lee Y, Kim G, Kim S, Lee S, Seung Lee T. Synthesis of a dual-emissive pyrene-based fluorescent probe for imaging intracellular viscosity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Oxidation of sodium cholate catalyzed by Au NPs and chiral selective binding of R- and S-binaphthyl derivatives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|