1
|
Carpenter W, Lavania AA, Squires AH, Moerner WE. Label-Free Anti-Brownian Trapping of Single Nanoparticles in Solution. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:20275-20286. [PMID: 39634022 PMCID: PMC11613540 DOI: 10.1021/acs.jpcc.4c05878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Today, biomolecular nanoparticles are prevalent as diagnostic tools and molecular delivery carriers, and it is particularly useful to examine individuals within a sample population to quantify the variations between objects and directly observe the molecular dynamics involving these objects. Using interferometric scattering as a highly sensitive label-free detection scheme, we recently developed the interferometric scattering anti-Brownian electrokinetic (ISABEL) trap to hold a single nanoparticle in solution for extended optical observation. In this perspective, we describe how we implemented this trap, how it extends the capabilities of previous ABEL traps, and how we have begun to study individual carboxysomes, a fascinating biological carbon fixation nanocompartment. By monitoring single nanocompartments for seconds to minutes in the ISABEL trap using simultaneous interferometric scattering and fluorescence spectroscopy, we have demonstrated single-compartment mass measurements, cargo-loading trends, and redox sensing inside individual particles. These experiments benefit from rich multiplexed correlative measurements utilizing both scattering and fluorescence with many exciting future capabilities within reach.
Collapse
Affiliation(s)
- William
B. Carpenter
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Abhijit A. Lavania
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Allison H. Squires
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Institute
for Biophysical Dynamics, University of
Chicago, Chicago, Illinois 60637, United States
- Chan
Zuckerberg Biohub Chicago, LLC, Chicago, Illinois 60642, United States
| | - W. E. Moerner
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Trettel DS, Hoang Y, Vecchiarelli AG, Gonzalez-Esquer CR. A robust synthetic biology toolkit to advance carboxysome study and redesign. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617227. [PMID: 39416180 PMCID: PMC11482911 DOI: 10.1101/2024.10.08.617227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Carboxysomes are polyhedral protein organelles that microorganisms use to facilitate carbon dioxide assimilation. They are composed of a modular protein shell which envelops an enzymatic core mainly comprised of physically coupled Rubisco and carbonic anhydrase. While the modular construction principles of carboxysomes make them attractive targets as customizable metabolic platforms, their size and complexity can be a hinderance. In this work, we design and validate a plasmid set - the pXpressome toolkit - in which α-carboxysomes are robustly expressed and remain intact and functional after purification. We tested this toolkit by introducing mutations which influence carboxysome structure and performance. We find that deletion of vertex-capping genes results in formation of larger carboxysomes while deletion of facet forming genes produces smaller particles, suggesting that adjusting the ratio of these proteins can rationally affect morphology. Through a series of fluorescently labeled constructs, we observe this toolkit leads to more uniform expression and better cell health than previously published carboxysome expression systems. Overall, the pXpressome toolkit facilitates the study and redesign of carboxysomes with robust performance and improved phenotype uniformity. The pXpressome toolkit will support efforts to remodel carboxysomes for enhanced carbon fixation or serve as a platform for other nanoencapsulation goals.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Cesar R. Gonzalez-Esquer
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| |
Collapse
|
3
|
Kaynak B, Alkhaled M, Kartal E, Yanik C, Hanay MS. Atmospheric-Pressure Mass Spectrometry by Single-Mode Nanoelectromechanical Systems. NANO LETTERS 2023; 23:8553-8559. [PMID: 37681677 PMCID: PMC10540252 DOI: 10.1021/acs.nanolett.3c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Weighing particles above the megadalton mass range has been a persistent challenge in commercial mass spectrometry. Recently, nanoelectromechanical systems-based mass spectrometry (NEMS-MS) has shown remarkable performance in this mass range, especially with the advance of performing mass spectrometry under entirely atmospheric conditions. This advance reduces the overall complexity and cost while increasing the limit of detection. However, this technique required the tracking of two mechanical modes and the accurate knowledge of mode shapes that may deviate from their ideal values, especially due to air damping. Here, we used a NEMS architecture with a central platform, which enables the calculation of mass by single-mode measurements. Experiments were conducted using polystyrene and gold nanoparticles to demonstrate the successful acquisition of mass spectra using a single mode with an improved areal capture efficiency. This advance represents a step forward in NEMS-MS, bringing it closer to becoming a practical application for the mass sensing of nanoparticles.
Collapse
Affiliation(s)
- Batuhan
E. Kaynak
- Department
of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey
- UNAM
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Mohammed Alkhaled
- Department
of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey
- UNAM
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Enise Kartal
- Department
of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey
- UNAM
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Cenk Yanik
- SUNUM,
Sabancı University Nanotechnology Research and Application Center, 34956 Istanbul, Turkey
| | - M. Selim Hanay
- Department
of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey
- UNAM
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
4
|
Zhang X, Gao J, Wang X, Wang S, Jiang B, Wang W, Wang H. Determining the Local Refractive Index of Single Particles by Optical Imaging Technique. Anal Chem 2022; 94:17741-17745. [PMID: 36520603 DOI: 10.1021/acs.analchem.2c04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The refractive index points to the interplay between light and objects, which is rarely studied down to micronano scale. Herein, we demonstrated a conventional bright-field imaging technique to determine the local refractive index of single particles combined with a series of refractive index standard solutions. This intrinsic optical property is independent with the particle size and surface roughness with a single chemical component. Furthermore, we accurately tuned refractive index of homemade core-shell nanoparticles by adjusting the ratio of core-to-shell geometry. This simple and effective strategy reveals extensive applications in exploring, designing and optimizing the physical and optical characterizations of composite photonic crystals with high precision. It also indicates potentials in the field of reflective displays, optical identification, and encryption.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Xinyue Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Sa Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|