1
|
Buntkowsky G, Hoffmann M. NMR and MD Simulations of Non-Ionic Surfactants. Molecules 2025; 30:309. [PMID: 39860179 PMCID: PMC11767737 DOI: 10.3390/molecules30020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Non-ionic surfactants are an important solvent in the field of green chemistry with tremendous application potential. Understanding their phase properties in bulk or in confined environments is of high commercial value. In recent years, the combination of molecular dynamics (MD) simulations with multinuclear solid-state NMR spectroscopy and calorimetric techniques has evolved into the most powerful tool for their investigation. Showing recent examples from our groups, the present review demonstrates the power and versatility of this approach, which can handle both small model-surfactants like octanol and large technical surfactants like technical polyethylene glycol (PEG) mixtures and reveals otherwise unobtainable knowledge about their phase behavior and the underlying molecular arrangements.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Department of Chemistry, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| | - Markus Hoffmann
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| |
Collapse
|
2
|
Moon HJ, Carrillo JY, Song M, Rim G, Heller WT, Leisen J, Proaño L, Short GN, Banerjee S, Sumpter BG, Jones CW. Underlying Roles of Polyol Additives in Promoting CO 2 Capture in PEI/Silica Adsorbents. CHEMSUSCHEM 2024; 17:e202400967. [PMID: 38830830 PMCID: PMC11587690 DOI: 10.1002/cssc.202400967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Solid-supported amines having low molecular weight branched poly(ethylenimine) (PEI) physically impregnated into porous solid supports are promising adsorbents for CO2 capture. Co-impregnating short-chain poly(ethylene glycol) (PEG) together with PEI alters the performance of the adsorbent, delivering improved amine efficiency (AE, mol CO2 sorbed/mol N) and faster CO2 uptake rates. To uncover the physical basis for this improved gas capture performance, we probe the distribution and mobility of the polymers in the pores via small angle neutron scattering (SANS), solid-state NMR, and molecular dynamic (MD) simulation studies. SANS and MD simulations reveal that PEG displaces wall-bound PEI, making amines more accessible for CO2 sorption. Solid-state NMR and MD simulation suggest intercalation of PEG into PEI domains, separating PEI domains and reducing amine-amine interactions, providing potential PEG-rich and amine-poor interfacial domains that bind CO2 weakly via physisorption while providing facile pathways for CO2 diffusion. Contrary to a prior literature hypothesis, no evidence is obtained for PEG facilitating PEI mobility in solid supports. Instead, the data suggest that PEG chains coordinate to PEI, forming larger bodies with reduced mobility compared to PEI alone. We also demonstrate promising CO2 uptake and desorption kinetics at varied temperatures, facilitated by favorable amine distribution.
Collapse
Affiliation(s)
- Hyun June Moon
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | | | - MinGyu Song
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - Guanhe Rim
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - William T. Heller
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Johannes Leisen
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - Laura Proaño
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - Gabriel N. Short
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - Sayan Banerjee
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - Bobby G. Sumpter
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN 37380USA
| | - Christopher W. Jones
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332USA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA 30332USA
| |
Collapse
|
3
|
Wang J, Li Z. Electric field modulated configuration and orientation of aqueous molecule chains. J Chem Phys 2024; 161:094305. [PMID: 39230558 DOI: 10.1063/5.0222122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Understanding how external electric fields (EFs) impact the properties of aqueous molecules is crucial for various applications in chemistry, biology, and engineering. In this paper, we present a study utilizing molecular dynamics simulation to explore how direct-current (DC) and alternative-current (AC) EFs affect hydrophobic (n-triacontane) and hydrophilic (PEG-10) oligomer chains. Through a machine learning approach, we extract a 2-dimensional free energy (FE) landscape of these molecules, revealing that electric fields modulate the FE landscape to favor stretched configurations and enhance the alignment of the chain with the electric field. Our observations indicate that DC EFs have a more prominent impact on modulation compared to AC EFs and that EFs have a stronger effect on hydrophobic chains than on hydrophilic oligomers. We analyze the orientation of water dipole moments and hydrogen bonds, finding that EFs align water molecules and induce more directional hydrogen bond networks, forming 1D water structures. This favors the stretched configuration and alignment of the studied oligomers simultaneously, as it minimizes the disruption of 1D structures. This research deepens our understanding of the mechanisms by which electric fields modulate molecular properties and could guide the broader application of EFs to control other aqueous molecules, such as proteins or biomolecules.
Collapse
Affiliation(s)
- Jiang Wang
- College of Science, Guizhou Institute of Technology, Boshi Road, Dangwu Town, Gui'an New District, Guizhou 550025, China
| | - Zhiling Li
- College of Science, Guizhou Institute of Technology, Boshi Road, Dangwu Town, Gui'an New District, Guizhou 550025, China
| |
Collapse
|
4
|
Ho TH, Hien TD, Wilhelmsen Ø, Trinh TT. Thermophysical properties of polyethylene glycol oligomers via molecular dynamics simulations. RSC Adv 2024; 14:28125-28137. [PMID: 39228756 PMCID: PMC11369976 DOI: 10.1039/d4ra04898a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Polyethylene glycol (PEG) is a versatile chemical with numerous applications in various fields, including biomedical research, pharmaceutical development, and industrial manufacturing. Molecular dynamics (MD) is a powerful tool for investigating the thermophysical properties of PEG molecules. In this study, we employ the General AMBER force field (GAFF) to perform MD simulations on various PEG oligomers, focusing on the calculation of density, self-diffusion coefficients, shear viscosity, and thermal conductivity. The results demonstrate excellent agreement with experimental data, where GAFF outperforms other force fields in reproducing thermophysical properties. For a PEG tetramer, the GAFF force field reproduces experimental data within 5% for the density, 5% for the diffusion coefficient, and 10% for the viscosity. In comparison, the OPLS force field displays significant deviations exceeding 80% for the diffusion coefficient and 400% for the viscosity. A detailed analysis of partial charge distributions and dihedral angles reveals that they significantly impact the structural behavior of PEG oligomers. The findings highlight the GAFF force field as one of the most accurate and reliable options for simulating systems with PEGs.
Collapse
Affiliation(s)
- Thi H Ho
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Tong Duy Hien
- Faculty of Engineering, Vietnamese-German University (VGU) Thu Dau Mot City Binh Duong Province 75000 Vietnam
| | - Øivind Wilhelmsen
- Department of Chemistry, Porelab, Norwegian University of Science and Technology Trondheim Norway
| | - Thuat T Trinh
- Department of Chemistry, Porelab, Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
5
|
Hao L, Sun J, Wang Q, Xie H, Yang X, Wei Q. Application of Mesoporous Carbon-Based Highly Dispersed K-O 2 Strong Lewis Base in the Efficient Catalysis of Methanol and Ethylene Carbonate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42080-42092. [PMID: 39078413 DOI: 10.1021/acsami.4c05587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
As an atom-economical reaction, the direct generation of dimethyl carbonate (DMC) and ethylene glycol (EG) via the transesterification of CH3OH and ethylene carbonate (EC) has several promising applications, but the exploration of carriers with high specific surface areas and novel heterogeneous catalysts with more basic sites remains a long-standing research challenge. For this purpose, herein, a nitrogen-doped mesoporous carbon (NMC, 439 m2/g) based K-O2 Lewis base catalyst (K-O2/NMC) with well-dispersed strongly basic sites (2.23 mmol/g, 84.5%) was designed and synthesized. The compositions and structures of NMC and K-O2/NMC were comprehensively investigated via Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, CO2 temperature-programmed desorption, and contact angle measurements. The optimal structural configuration and electron cloud distribution of the K-O2/NMC catalyst were simulated using first-principles calculations. The electron transfer predominantly manifested as a flow from K-O to C-O/C-N, and the interatomic interactions between each atom were enhanced and exhibited a tendency for a more stable state after redistribution. Furthermore, the adsorption energies (Eads) of CH3OH at K-O-O and K-O-N sites were -1.4185 eV and -1.3377 eV, respectively, and the O atom in CH3OH exhibited a stronger adsorption tendency for the K atom at the K-O-O site. Under the optimal conditions, the EC conversion, DMC/EG selectivity, and turnover number/frequency were 80.9%, 98.6%/99.4%, and 40.5/60.8 h-1, respectively, with a reaction rate constant (k) of 0.1005 mol/(L·min). Results showed that the heterogeneous K-O2/NMC catalyst prepared herein greatly reduced the reaction cost while guaranteeing the catalytic effect, and the whole system required a lower reaction temperature (65 °C), a shorter reaction time (40 min), and a lower catalyst amount (2.0 wt % of EC). Therefore, K-O2/NMC can be used as a catalyst in different transesterification reactions.
Collapse
Affiliation(s)
- Liying Hao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, Sichuan 610041, China
| | - Jikui Sun
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, Sichuan 610041, China
| | - Qingyin Wang
- National Engineering Laboratory for VOCs Pollution Control Material &Technology, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu, Sichuan 610041, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou, Zhejiang 310000, China
| | - Xiangui Yang
- National Engineering Laboratory for VOCs Pollution Control Material &Technology, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu, Sichuan 610041, China
| | - Qiang Wei
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Hoffmann MM, Gonzalez AA, Huynh MT, Miller KK, Gutmann T, Buntkowsky G. Densities, Viscosities, and Self-Diffusion Coefficients of Octan-1-ol and Related Ether-Alcohols. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2024; 69:2688-2699. [PMID: 39139987 PMCID: PMC11317982 DOI: 10.1021/acs.jced.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Density, viscosity, and self-diffusion coefficients are reported for octan-1-ol and the related ether-alcohols 2-pentoxy-ethan-1-ol, 3-butoxypropan-1-ol, 4-propoxybutan-1-ol, 5-ethoxypentan-1-ol, and 6-methoxyhexan-1-ol covering temperature ranges from 298.15 to 359.15 K. These new data reveal structure-property relationships affected by the presence and the position of the ether moiety in the molecular structure of the ether-alcohols. Compared to octan-1-ol, the presence of the ether moiety causes an increase in intermolecular hydrogen bonding interactions, resulting in higher densities. The increase in density is less pronounced for those ether-octanols that engage in intramolecular hydrogen bonding. As for the effects of the ether moiety on the dynamics, these are generally faster for the ether-alcohols compared to octan-1-ol, suggesting that hydrogen bonding between ether oxygen and hydroxy hydrogen is weaker compared to hydrogen bonding between two hydroxy groups. The activation energies obtained from an Arrhenius analysis are higher for translational motion than for momentum transfer for all alcohols. There are additional finer details across the ether alcohols for these activation barriers. These differences cancel out for the mathematical product of self-diffusion coefficient and viscosity (Dη). The effect of water impurities on the studied properties was also investigated and found to lead to small increases in densities for all alcohols. Viscosities decrease for octan-1-ol and 2-pentoxyethan-1-ol but increase for the other ether-alcohols that can engage in intramolecular hydrogen bonding.
Collapse
Affiliation(s)
- Markus M. Hoffmann
- Department
of Chemistry and Biochemistry, State University
of New York Brockport, Brockport, New York 14420, United States
| | - Anthony A. Gonzalez
- Department
of Chemistry and Biochemistry, State University
of New York Brockport, Brockport, New York 14420, United States
| | - Mandy T. Huynh
- Department
of Chemistry and Biochemistry, State University
of New York Brockport, Brockport, New York 14420, United States
| | - Kashane K. Miller
- Department
of Chemistry and Biochemistry, State University
of New York Brockport, Brockport, New York 14420, United States
| | - Torsten Gutmann
- Institute
of Physical Chemistry, Technical University
Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Gerd Buntkowsky
- Institute
of Physical Chemistry, Technical University
Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| |
Collapse
|
7
|
Ho TH, Tong HD, Trinh TT. Molecular insights into the interactions between PEG carriers and drug molecules from Celastrus hindsii: a multi-scale simulation study. Sci Rep 2024; 14:16777. [PMID: 39039128 PMCID: PMC11263547 DOI: 10.1038/s41598-024-67720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Efficient drug delivery is crucial for the creation of effective pharmaceutical treatments, and polyethylene glycol (PEG) carriers have been emerged as promising candidates for this purpose due to their bio-compatibility, enhancement of drug solubility, and stability. In this study, we utilized molecular simulations to examine the interactions between PEG carriers and selected drug molecules extracted from Celastrus hindsii: Hindsiilactone A, Hindsiiquinoflavan B, Maytenfolone A, and Celasdin B. The simulations provided detailed insights into the binding affinity, stability, and structural properties of these drug molecules when complexed with PEG carriers. A multi-scale approach combining density functional theory (DFT), extended tight-binding (xTB), and molecular dynamics (MD) simulations was conducted to investigate both unbound and bound states of PEG/drug systems. The results from DFT and xTB calculations revealed that the unbound complex has an unfavorable binding free energy, primarily due to negative contributions of delta solvation free energy and entropy. The MD simulations provided more detailed insights into the interactions between PEG and drug molecules in water solutions. By integrating the findings from the multi-scale simulations, a comprehensive picture of the unbound and bound states of PEG and drug systems were obtained. This information is valuable for understanding the molecular mechanisms governing the binding of drugs in PEG-based delivery platforms, and it contributes to the rational design and optimization of these systems.
Collapse
Affiliation(s)
- Thi H Ho
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000, Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Vietnam
| | - Hien Duy Tong
- Faculty of Engineering, Vietnamese-German University (VGU), Thu Dau Mot City, Binh Duong Province, 75000, Vietnam
| | - Thuat T Trinh
- Porelab, Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.
| |
Collapse
|
8
|
Hoffmann MM, Too MD, Paddock NA, Horstmann R, Kloth S, Vogel M, Buntkowsky G. Molecular Dynamics Study of the Green Solvent Polyethylene Glycol with Water Impurities. Molecules 2024; 29:2070. [PMID: 38731561 PMCID: PMC11085543 DOI: 10.3390/molecules29092070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Polyethylene glycol (PEG) is one of the environmentally benign solvent options for green chemistry. It readily absorbs water when exposed to the atmosphere. The Molecular Dynamics (MD) simulations of PEG200, a commercial mixture of low molecular weight polyethyelene glycol oligomers, as well as di-, tetra-, and hexaethylene glycol are presented to study the effect of added water impurities up to a weight fraction of 0.020, which covers the typical range of water impurities due to water absorption from the atmosphere. Each system was simulated a total of four times using different combinations of two force fields for the water (SPC/E and TIP4P/2005) and two force fields for the PEG and oligomer (OPLS-AA and modified OPLS-AA). The observed trends in the effects of water addition were qualitatively quite robust with respect to these force field combinations and showed that the water does not aggregate but forms hydrogen bonds at most between two water molecules. In general, the added water causes overall either no or very small and nuanced effects in the simulation results. Specifically, the obtained water RDFs are mostly identical regardless of the water content. The added water reduces oligomer hydrogen bonding interactions overall as it competes and forms hydrogen bonds with the oligomers. The loss of intramolecular oligomer hydrogen bonding is in part compensated by oligomers switching from inter- to intramolecular hydrogen bonding. The interplay of the competing hydrogen bonding interactions leads to the presence of shallow extrema with respect to the water weight fraction dependencies for densities, viscosities, and self-diffusion coefficients, in contrast to experimental measurements, which show monotonous dependencies. However, these trends are very small in magnitude and thus confirm the experimentally observed insensitivity of these physical properties to the presence of water impurities.
Collapse
Affiliation(s)
- Markus M. Hoffmann
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| | - Matthew D. Too
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| | - Nathaniel A. Paddock
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| | - Robin Horstmann
- Institute of Condensed Matter Physics, Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany (M.V.)
| | - Sebastian Kloth
- Institute of Condensed Matter Physics, Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany (M.V.)
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany (M.V.)
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
9
|
Haro Mares NB, Döller SC, Wissel T, Hoffmann M, Vogel M, Buntkowsky G. Structures and Dynamics of Complex Guest Molecules in Confinement, Revealed by Solid-State NMR, Molecular Dynamics, and Calorimetry. Molecules 2024; 29:1669. [PMID: 38611950 PMCID: PMC11013127 DOI: 10.3390/molecules29071669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
This review gives an overview of current trends in the investigation of confined molecules such as water, small and higher alcohols, carbonic acids, ethylene glycol, and non-ionic surfactants, such as polyethylene glycol or Triton-X, as guest molecules in neat and functionalized mesoporous silica materials employing solid-state NMR spectroscopy, supported by calorimetry and molecular dynamics simulations. The combination of steric interactions, hydrogen bonds, and hydrophobic and hydrophilic interactions results in a fascinating phase behavior in the confinement. Combining solid-state NMR and relaxometry, DNP hyperpolarization, molecular dynamics simulations, and general physicochemical techniques, it is possible to monitor these confined molecules and gain deep insights into this phase behavior and the underlying molecular arrangements. In many cases, the competition between hydrogen bonding and electrostatic interactions between polar and non-polar moieties of the guests and the host leads to the formation of ordered structures, despite the cramped surroundings inside the pores.
Collapse
Affiliation(s)
- Nadia B. Haro Mares
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Sonja C. Döller
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Till Wissel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Markus Hoffmann
- Department of Chemistry and Biochemistry, State University of New York at Brockport, Brockport, NY 14420, USA
| | - Michael Vogel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, D-64289 Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| |
Collapse
|