1
|
Anselmo S, Bonaccorso E, Gangemi C, Sancataldo G, Conti Nibali V, D’Angelo G. Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques? MEMBRANES 2025; 15:6. [PMID: 39852247 PMCID: PMC11766618 DOI: 10.3390/membranes15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025]
Abstract
Lipid rafts are dynamic microdomains in the membrane, rich in cholesterol and sphingolipids, that are critical for biological processes like cell signalling, membrane trafficking, and protein organization. Their essential role is claimed in both physiological and pathological conditions, including cancer, neurodegenerative diseases, and viral infections, making them a key area of research. Fluorescence-based approaches, including super-resolution fluorescence microscopy techniques, enable precise analysis of the organization, dynamics, and interactions of these microdomains, thanks also to the innovative design of appropriate fluorescent probes. Moreover, these non-invasive approaches allow for the study of live cells, facilitating the collection of quantitative data under physiologically relevant conditions. This review synthesizes the latest insights into the role of lipid rafts in biological and pathological processes and underscores how fluorescence techniques have advanced our understanding of these critical microdomains. The findings emphasize the pivotal role of lipid rafts in health and disease, providing a foundation for future research and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara Anselmo
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.A.); (G.S.)
| | - Elisa Bonaccorso
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Chiara Gangemi
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Giuseppe Sancataldo
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.A.); (G.S.)
| | - Valeria Conti Nibali
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Giovanna D’Angelo
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| |
Collapse
|
2
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Rensonnet A, Tipping WJ, Malherbe C, Faulds K, Eppe G, Graham D. Spectral fingerprinting of cellular lipid droplets using stimulated Raman scattering microscopy and chemometric analysis. Analyst 2024; 149:553-562. [PMID: 38088863 DOI: 10.1039/d3an01684f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Hyperspectral stimulated Raman scattering (SRS) microscopy is a powerful method for direct visualisation and compositional analysis of cellular lipid droplets. Here we report the application of spectral phasor analysis as a convenient method for the segmentation of lipid droplets using the hyperspectral SRS spectrum in the high wavenumber and fingerprint region of the spectrum. Spectral phasor analysis was shown to discriminate six fatty acids based on vibrational spectroscopic features in solution. The methodology was then applied to studying fatty acid metabolism and storage in a mammalian cancer cell model and during drug-induced steatosis in a hepatocellular carcinoma cell model. The accumulation of fatty acids into cellular lipid droplets was shown to vary as a function of the degree of unsaturation, whilst in a model of drug-induced steatosis, the detection of increased saturated fatty acid esters was observed. Taking advantage of the fingerprint and high wavenumber regions of the SRS spectrum has yielded a greater insight into lipid droplet composition in a cellular context. This approach will find application in the label-free profiling of intracellular lipids in complex disease models.
Collapse
Affiliation(s)
- Aurélie Rensonnet
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK.
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée du 6 Août, 4000 Liège, Belgium
| | - William J Tipping
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée du 6 Août, 4000 Liège, Belgium
| | - Karen Faulds
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK.
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Allée du 6 Août, 4000 Liège, Belgium
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK.
| |
Collapse
|
4
|
Postnikov EB, Wasiak M, Bartoszek M, Polak J, Zyubin A, Lavrova AI, Chora̧żewski M. Accessing Properties of Molecular Compounds Involved in Cellular Metabolic Processes with Electron Paramagnetic Resonance, Raman Spectroscopy, and Differential Scanning Calorimetry. Molecules 2023; 28:6417. [PMID: 37687246 PMCID: PMC10490169 DOI: 10.3390/molecules28176417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
In this work, we review some physical methods of macroscopic experiments, which have been recently argued to be promising for the acquisition of valuable characteristics of biomolecular structures and interactions. The methods we focused on are electron paramagnetic resonance spectroscopy, Raman spectroscopy, and differential scanning calorimetry. They were chosen since it can be shown that they are able to provide a mutually complementary picture of the composition of cellular envelopes (with special attention paid to mycobacteria), transitions between their molecular patterning, and the response to biologically active substances (reactive oxygen species and their antagonists-antioxidants-as considered in our case study).
Collapse
Affiliation(s)
- Eugene B. Postnikov
- Theoretical Physics Department, Kursk State University, Radishcheva St. 33, 305000 Kursk, Russia
| | - Michał Wasiak
- Department of Physical Chemistry, University of Lódź, ul. Pomorska 165, 90-236 Lódź, Poland;
| | - Mariola Bartoszek
- Institute of Chemistry, University of Silesia in Katowice, ul. Szkolna 9, 40-006 Katowice, Poland; (M.B.); (J.P.)
| | - Justyna Polak
- Institute of Chemistry, University of Silesia in Katowice, ul. Szkolna 9, 40-006 Katowice, Poland; (M.B.); (J.P.)
| | - Andrey Zyubin
- Sophya Kovalevskaya North-West Mathematical Research Center, Immanuel Kant Baltic Federal University, Nevskogo St. 14, 236041 Kaliningrad, Russia; (A.Z.); (A.I.L.)
| | - Anastasia I. Lavrova
- Sophya Kovalevskaya North-West Mathematical Research Center, Immanuel Kant Baltic Federal University, Nevskogo St. 14, 236041 Kaliningrad, Russia; (A.Z.); (A.I.L.)
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Ligovskiy Prospect 2-4, 194064 Saint Petersburg, Russia
| | - Mirosław Chora̧żewski
- Institute of Chemistry, University of Silesia in Katowice, ul. Szkolna 9, 40-006 Katowice, Poland; (M.B.); (J.P.)
| |
Collapse
|