1
|
Han YL, Yin HH, Li C, Du J, He Y, Guan YX. Discovery of New Pentapeptide Inhibitors Against Amyloid-β Aggregation Using Word2Vec and Molecular Simulation. ACS Chem Neurosci 2025; 16:1055-1065. [PMID: 39999409 DOI: 10.1021/acschemneuro.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the aggregation of amyloid-β (Aβ) peptides into toxic oligomers and fibrils. The efficacy of existing peptide inhibitors based on the central hydrophobic core (CHC) sequence of Aβ42 remains limited due to self-aggregation or poor inhibition. This study aimed to identify novel pentapeptide inhibitors with high similarity and low binding energy to the CHC region LVFFA using a new computational screening workflow based on Word2Vec and molecular simulation. The antimicrobial peptides and human brain protein sequences were used for training the Word2Vec model. After tuning the parameters of the Word2Vec model, 1017 pentapeptides with high similarity to LVFFA were identified. Molecular docking was employed to estimate the affinity of the pentapeptides for the target of Aβ14-42 pentamer, and 103 peptides with favorable docking scores were obtained. Finally, five pentapeptides with a low binding energy and high binding stability via molecular dynamics simulation were experimentally validated using thioflavin T assays. Surprisingly, one pentapeptide, i.e., PALIR, exhibited significant inhibition surpassing the positive control LPFFN. This study demonstrates an effective combinatorial strategy to discover new peptide inhibitors. With PALIR representing a promising lead candidate, further optimization of PALIR could aid in the development of improved therapies to prevent amyloid toxicity in AD.
Collapse
Affiliation(s)
- Yin-Lei Han
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huan-Huan Yin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chen Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiangyue Du
- Department of General Practice, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310020, China
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yi-Xin Guan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Pan J, Ng CL, Lim TS, Choong YS. In silico pentapeptide design for the inhibition between S100 calcium-binding A9 (S100A9) proteins. J Mol Model 2025; 31:77. [PMID: 39920469 DOI: 10.1007/s00894-025-06298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
CONTEXT S100 calcium-binding protein A9 (S100A9) is easily assembled into amyloid aggregates in solution. These amyloid aggregates cause retinal toxicity and act as an attachment core for Aβ fibrillar plaques that contribute to Alzheimer's disease progression. The overexpression of S100A9 is also noticed in various malignancies. Therefore, the S100A9 amyloid formation inhibition is of significant interest. In comparison with small-molecule drugs, short peptides demonstrate higher specificity, potency, and biosafety. Hence, it could be beneficial to identify potential peptides to inhibit or disrupt S100A9 amyloid aggregation. Typical peptide design and identification via experimental means requires extensive preparation procedures and is limited to random selection of peptides. Virtual screening therefore offers an unbiased, higher throughput, and economically efficient approach in peptide drug development. Here, we reported in silico pentapeptide design against S100A9 and studied the interaction of pentapeptide with S100A9 that leads to the binding of the peptide with S100A9. METHOD Docking simulation resulted in three top binding free energy tripeptides (WWF, WPW, and YWF) with comparable affinity towards a known S100A9 inhibitor (polyphenol oleuropein aglycone; OleA). Subsequently, pentapeptides that consist of the three core tripeptides were selected from a pre-constructed pentapeptide library for further evaluation with docking simulation. Based on best docked binding free energy, two pentapeptides (WWPWH and WPWYW) were selected and subjected to 500 ns molecular dynamics (MD) simulation to study the important features that lead to the binding with S100A9. MMGBSA binding free energy calculation estimated - 30.38, - 24.58, and - 30.31 kcal/mol for WWPWH, WPWYW, and OleA, respectively. The main driving force for pentapeptide-S100A9 recognition was contributed by the electrostatic interaction. The results demonstrate that at in silico level, this workflow is able to design potential pentapeptides that are comparable with OleA and might be the lead molecule for future use to disaggregate S100A9 fibrils.
Collapse
Affiliation(s)
- Jintao Pan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Chong Lee Ng
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
3
|
Moraca F, Vespoli I, Mastroianni D, Piscopo V, Gaglione R, Arciello A, De Nisco M, Pacifico S, Catalanotti B, Pedatella S. Synthesis, biological evaluation and metadynamics simulations of novel N-methyl β-sheet breaker peptides as inhibitors of Alzheimer's β-amyloid fibrillogenesis. RSC Med Chem 2024; 15:2286-2299. [PMID: 39026638 PMCID: PMC11253850 DOI: 10.1039/d4md00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/07/2024] [Indexed: 07/20/2024] Open
Abstract
Several scientific evidences report that a central role in the pathogenesis of Alzheimer's disease is played by the deposition of insoluble aggregates of β-amyloid proteins in the brain. Because Aβ is self-assembling, one possible design strategy is to inhibit the aggregation of Aβ peptides using short peptide fragments homologous to the full-length wild-type Aβ protein. In the past years, several studies have reported on the synthesis of some short synthetic peptides called β-sheet breaker peptides (BSBPs). Herein, we present the synthesis of novel (cell-permeable) N-methyl BSBPs, designed based on literature information on the structural key features of BSBPs. Three-dimensional GRID-based pharmacophore peptide screening combined with PT-WTE metadynamics was performed to support the results of the design and microwave-assisted synthesis of peptides 2 and 3 prepared and analyzed for their fibrillogenesis inhibition activity and cytotoxicity. An HR-MS-based cell metabolomic approach highlighted their cell permeability properties.
Collapse
Affiliation(s)
- Federica Moraca
- Department of Pharmacy, University of Napoli Federico II Via Domenico Montesano 49 I-80131 Napoli Italy
- Net4Science Academic Spin-Off, University "Magna Græcia" of Catanzaro Viale Europa 88100 Catanzaro Italy
| | - Ilaria Vespoli
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 542/2 CZ-16610 Prague Czech Republic
| | - Domenico Mastroianni
- Department of Chemical Sciences, University of Napoli Federico II Via Cintia 4 I-80126 Napoli Italy
| | - Vincenzo Piscopo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli" Viale Abramo Lincoln 5 I-81100 Caserta Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Napoli Federico II Via Cintia 4 I-80126 Napoli Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB) Viale delle Medaglie d'Oro 305 I-80145 Roma Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Napoli Federico II Via Cintia 4 I-80126 Napoli Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB) Viale delle Medaglie d'Oro 305 I-80145 Roma Italy
| | - Mauro De Nisco
- Department of Sciences, University of Basilicata Viale dell'Ateneo Lucano I-85100 Potenza Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli" Viale Abramo Lincoln 5 I-81100 Caserta Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Napoli Federico II Via Domenico Montesano 49 I-80131 Napoli Italy
| | - Silvana Pedatella
- Department of Chemical Sciences, University of Napoli Federico II Via Cintia 4 I-80126 Napoli Italy
| |
Collapse
|
4
|
Le VT, Zhan ZJ, Vu TTP, Malik MS, Ou YY. ProtTrans and multi-window scanning convolutional neural networks for the prediction of protein-peptide interaction sites. J Mol Graph Model 2024; 130:108777. [PMID: 38642500 DOI: 10.1016/j.jmgm.2024.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
This study delves into the prediction of protein-peptide interactions using advanced machine learning techniques, comparing models such as sequence-based, standard CNNs, and traditional classifiers. Leveraging pre-trained language models and multi-view window scanning CNNs, our approach yields significant improvements, with ProtTrans standing out based on 2.1 billion protein sequences and 393 billion amino acids. The integrated model demonstrates remarkable performance, achieving an AUC of 0.856 and 0.823 on the PepBCL Set_1 and Set_2 datasets, respectively. Additionally, it attains a Precision of 0.564 in PepBCL Set 1 and 0.527 in PepBCL Set 2, surpassing the performance of previous methods. Beyond this, we explore the application of this model in cancer therapy, particularly in identifying peptide interactions for selective targeting of cancer cells, and other fields. The findings of this study contribute to bioinformatics, providing valuable insights for drug discovery and therapeutic development.
Collapse
Affiliation(s)
- Van-The Le
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Zi-Jun Zhan
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Thi-Thu-Phuong Vu
- Graduate Program in Biomedical Informatics, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Muhammad-Shahid Malik
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan; Department of Computer Science and Engineering, Karakoram International University, Pakistan
| | - Yu-Yen Ou
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan; Graduate Program in Biomedical Informatics, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
5
|
Sarkar D, Bhunia A. Delineating the Role of GxxxG Motif in Amyloidogenesis: A New Perspective in Targeting Amyloid-Beta Mediated AD Pathogenesis. ACS BIO & MED CHEM AU 2024; 4:4-19. [PMID: 38404748 PMCID: PMC10885112 DOI: 10.1021/acsbiomedchemau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 02/27/2024]
Abstract
The pursuit of a novel structural motif that can shed light on the key functional attributes is a primary focus in the study of protein folding disorders. Decades of research on Alzheimer's disease (AD) have centered on the Amyloid β (Aβ) pathway, highlighting its significance in understanding the disorder. The diversity in the Aβ pathway and the possible silent tracks which are yet to discover, makes it exceedingly intimidating to the interdisciplinary scientific community. Over the course of AD research, Aβ has consistently been at the forefront of scientific inquiry and discussion. In this review, we epitomize the role of a potential structural motif (GxxxG motif) that may provide a new horizon to the Aβ conflict. We emphasize on how comprehensive understanding of this motif from a structure-function perspective may pave the way for designing novel therapeutics intervention in AD and related diseases.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, Salt Lake EN
80, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, Salt Lake EN
80, Kolkata 700 091, India
| |
Collapse
|
6
|
Nguyen HL, Thai NQ, Li MS. Identifying inhibitors of NSP16-NSP10 of SARS-CoV-2 from large databases. J Biomol Struct Dyn 2023; 41:7045-7054. [PMID: 36002258 DOI: 10.1080/07391102.2022.2114941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic, which has already claimed millions of lives, continues to pose a serious threat to human health, requiring the development of new effective drugs. Non-structural proteins of SARS-CoV-2 play an important role in viral replication and infection. Among them, NSP16 (non-structured protein 16) and its cofactor NSP10 (non-structured protein 10) perform C2'-O methylation at the 5' end of the viral RNA, which promotes efficient virus replication. Therefore, the NSP16-NSP10 complex becomes an attractive target for drug development. Using a multi-step virtual screening protocol which includes Lipinski's rule, docking, steered molecular dynamics and umbrella sampling, we searched for potential inhibitors from the PubChem and anti-HIV databases. It has been shown that CID 135566620 compound from PubChem is the best candidate with an inhibition constant in the sub-μM range. The Van der Waals interaction was found to be more important than the electrostatic interaction in the binding affinity of this compound to NSP16-NSP10. Further in vitro and in vivo studies are needed to test the activity of the identified compound against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung, Software City, Ho Chi Minh City, Vietnam
- Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | | | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Tvrdoňová M, Borovská B, Salayová A, Rončák R, Michalčin P, Bednáriková Z, Gažová Z. Design and synthesis of novel carbohydrate-amino acid hybrids and their antioxidant and anti-β-amyloid aggregation activity. Bioorg Chem 2023; 137:106636. [PMID: 37290376 DOI: 10.1016/j.bioorg.2023.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Herein we report the synthesis of new furanoid sugar amino acids and thioureas, prepared by coupling aromatic amino acids and dipeptides with isothiocyanato- functionalized ribofuranose ring. Since carbohydrate-derived structures possess many biological activities, synthesized compounds were evaluated as anti-amyloid and antioxidant agents. The anti-amyloid activity of the studied compounds was evaluated based on their potential to destroy amyloid fibrils of intrinsically disordered Aβ40 peptide and globular hen egg-white (HEW) lysozyme. The destructive efficiency of the compounds differed between the studied peptides. While the destruction activity of the compounds on the HEW lysozyme amyloid fibrils was negligible, the effect on Aβ40 amyloid fibrils was significantly higher. Furanoid sugar α-amino acid 1 and its dipeptide derivatives 8 (Trp-Trp) and 11 (Trp-Tyr) were the most potent anti-Aβ fibrils compounds. The antioxidant properties of synthesized compounds were estimated by three complementary in vitro assays (DPPH, ABTS, and FRAP). The ABTS assay was the most sensitive for assessing the radical scavenging activity of all tested compounds compared to the DPPH test. Significant antioxidant activity was detected for compounds in the group of aromatic amino acids depending on the present amino acid, with the highest activity in the case of dipeptides 11 and 12 containing the Tyr and Trp moiety. Regarding the FRAP assay, the best reducing antioxidant potential revealed Trp-containing compounds 5, 10, and 12.
Collapse
Affiliation(s)
- Monika Tvrdoňová
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia.
| | - Barbora Borovská
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Aneta Salayová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Róbert Rončák
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia
| | - Peter Michalčin
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia
| | - Zuzana Bednáriková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Zuzana Gažová
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| |
Collapse
|
8
|
Man VH, He X, Wang J. Stable Cavitation Interferes with Aβ 16-22 Oligomerization. J Chem Inf Model 2022; 62:3885-3895. [PMID: 35920625 DOI: 10.1021/acs.jcim.2c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrasound and microbubbles are used for many medical applications nowadays. Scanning ultrasound can remove amyloid-β (Aβ) aggregates in the mouse brain and restores memory in an Alzheimer's disease mouse model. In vitro studies showed that amyloid fibrils are fragmented due to the ultrasound-induced bubble inertial cavitation, and ultrasonic pulses accelerate the depolymerization of Aβ fibrils into monomers at 1 μM of concentration. Under applied ultrasound, microbubbles can be in a stable oscillating state or unstable inertial cavitation state. The latter occurs when ultrasound causes a dramatic change of bubble sizes above a certain acoustic pressure. We have developed and implemented a nonequilibrium molecular dynamics simulation algorithm to the AMBER package, to facilitate the investigation of the molecular mechanism of Aβ oligomerization under stable cavitation. Our results indicated that stable cavitation not only inhibited oligomeric formation, but also prevented the formation of β-rich oligomers. The network analysis of state transitions revealed that stable cavitation altered the oligomerization pathways of Aβ16-22 peptides. Our simulation tool may be applied to optimize the experimental conditions to achieve the best therapeutical effect.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
9
|
Jarmuła A, Zubalska M, Stępkowski D. Consecutive Aromatic Residues Are Required for Improved Efficacy of β-Sheet Breakers. Int J Mol Sci 2022; 23:ijms23095247. [PMID: 35563639 PMCID: PMC9102079 DOI: 10.3390/ijms23095247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer’s disease is a fatal neurodegenerative malady which up to very recently did not have approved therapy modifying its course. After controversial approval of aducanumab (monoclonal antibody clearing β-amyloid plaques) by FDA for use in very early stages of disease, possibly new avenue opened for the treatment of patients. In line with this approach is search for compounds blocking aggregation into amyloid oligomers subsequently forming fibrils or compounds helping in getting rid of plaques formed by β-amyloid fibrils. Here we present in silico work on 627 sixtapeptide β-sheet breakers (BSBs) containing consecutive three aromatic residues. Three of these BSBs caused dissociation of one or two β-amyloid chains from U-shaped β-amyloid protofibril model 2BEG after docking and subsequent molecular dynamics simulations. Thorough analysis of our results let us postulate that the first steps of binding these successful BSBs involve π–π interactions with stacked chains of F19 and later also with F20 (F3 and F4 in 2BEG model of protofibril). The consecutive location of aromatic residues in BSBs makes them more attractive for chains of stacked F3 and F4 within the 2BEG model. Spotted by us, BSBs may be prospective lead compounds for an anti-Alzheimer’s therapy.
Collapse
Affiliation(s)
- Adam Jarmuła
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Pasteur 3 St., 02-093 Warsaw, Poland
- Correspondence: ; Tel.: +48-66-955-7696
| | - Monika Zubalska
- Faculty of Physics, University of Warsaw, Pasteur 5 St., 02-093 Warsaw, Poland;
| | - Dariusz Stępkowski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Pasteur 3 St., 02-093 Warsaw, Poland;
| |
Collapse
|
10
|
Man VH, Lin D, He X, Gao J, Wang J. Joint Computational/Cell-Based Approach for Screening Inhibitors of Tau Oligomerization: A Proof-of-Concept Study. J Alzheimers Dis 2022; 89:107-119. [PMID: 35848028 DOI: 10.3233/jad-220450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Tau assembly produces soluble oligomers and insoluble neurofibrillary tangles, which are neurotoxic to the brain and associated with Alzheimer's and Parkinson's diseases. Therefore, preventing tau aggregation is a promising therapy for those neurodegenerative disorders. OBJECTIVE The aim of this study was to develop a joint computational/cell-based oligomerization protocol for screening inhibitors of tau assembly. METHODS Virtual oligomerization inhibition (VOI) experiment using molecular dynamics simulation was performed to screen potential oligomerization inhibitors of PHF6 hexapeptide. Tau seeding assay, which is directly related to the outcome of therapeutic intervention, was carried out to confirm a ligand's ability in inhibiting tau assembly formation. RESULTS Our protocol was tested on two known compounds, EGCG and Blarcamesine. EGCG inhibited both the aggregation of PHF6 peptide in VOI and tau assembly in tau seeding assay, while Blarcamesine was not a good inhibitor at the two tasks. We also pointed out that good binding affinity to tau aggregates is needed, but not sufficient for a ligand to become a good inhibitor of tau oligomerization. CONCLUSION VOI goes beyond traditional computational inhibitor screening of amyloid aggregation by directly examining the inhibitory ability of a ligand to tau oligomerization. Comparing with the traditional biochemical assays, tau seeding activities in cells is a better indicator for the outcome of a therapeutic intervention. Our hybrid protocol has been successfully validated. It can effectively and efficiently identify the inhibitors of amyloid oligomerization/aggregation processes, thus, facilitate to the drug development of tau-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Da Lin
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Gao
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Destabilization of the Alzheimer's amyloid-β peptide by a proline-rich β-sheet breaker peptide: a molecular dynamics simulation study. J Mol Model 2021; 27:356. [PMID: 34796404 DOI: 10.1007/s00894-021-04968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
The amyloid-β peptide exists in the form of fibrils in the plaques found in the brains of patients with Alzheimer's disease. One of the therapeutic strategies is the design of molecules which can destabilize these fibrils. We present a designed peptide KLVFFP5 with two segments: the self-recognition sequence KLVFF and a β-sheet breaker proline pentamer. Molecular dynamics simulations and docking results showed that this peptide could bind to the protofibrils and destabilize them by establishing hydrophobic contacts and hydrogen bonds with a higher affinity than the KLVFF peptide. In the presence of the KLVFFP5 peptide, the β-sheet content of the protofibrils was reduced significantly; the hydrogen bonding network and the salt bridges were disrupted to a greater extent than the KLVFF peptide. Our results indicate that the KLVFFP5 peptide is an effective β-sheet disruptor which can be considered in the therapy of Alzheimer's disease.
Collapse
|
12
|
Cao Y, He Z, Gao Y, Xin Y, Luo L, Meng F. Boosting the Photodynamic Degradation of Islet Amyloid Polypeptide Aggregates Via a "Bait-Hook-Devastate" Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14911-14919. [PMID: 33764749 DOI: 10.1021/acsami.1c00082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photosensitizers that can generate reactive oxygen species (ROS) upon irradiation have emerged as promising agents for photodynamic degradation of toxic amyloid aggregates that are linked to many amyloidogenic diseases. However, due to the ultrastable β-sheet structure in amyloid aggregates and inefficient utilization of the generated ROS, it usually requires high stoichiometric concentration of the photosensitizer and/or intensive light irradiation to fully dissociate aggregates. In this work, we have developed a "bait-hook-devastate" strategy to boost the efficiency of the photodynamic degradation of amyloid aggregates. This strategy employs anionic polyacrylic acid as a bait to accumulate cationic human islet amyloid polypeptide (IAPP) aggregates and positively charged photosensitizer TPCI in a confined area through electronic interactions. Multiple characterization studies proved that the utilization rate of ROS generated by TPCI was remarkably improved via this strategy, which amplified the ability of TPCI to dissociate IAPP aggregates. Rapid and complete degradation of IAPP aggregates could be achieved by irradiating the system under very mild conditions for less than 30 min, and the IAPP-mediated cytotoxicity was also largely alleviated, providing a new paradigm to accelerate photodynamic degradation of amyloid aggregates for further practical applications.
Collapse
Affiliation(s)
- Yujuan Cao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenyan He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Kanchi PK, Dasmahapatra AK. Enhancing the binding of the β-sheet breaker peptide LPFFD to the amyloid-β fibrils by aromatic modifications: A molecular dynamics simulation study. Comput Biol Chem 2021; 92:107471. [PMID: 33706107 DOI: 10.1016/j.compbiolchem.2021.107471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
Alzheimer's is a fatal neurodegenerative disease for which there is no cure at present. The disease is characterized by the presence of plaques in the brains of a patient, which are composed mainly of aggregates of the amyloid-β peptide in the form of β-sheet fibrils. Here, we investigated the possibility of exploiting the superior binding ability of aromatic amino acids to a particular model of the amyloid-β fibrils. which is a difficult target for drug design. The β-sheet breaker peptide LPFFD was modified with aromatic amino acids and its binding to these fibrils was studied. We found that the orientation and the electrostatic complementarity of the modified peptide with respect to the fibrils played a crucial role in determining whether its binding was improved by the aromatic amino acids. The modified LPFFD peptides were able to bind to those fibril residues. which are important in the aggregation of amyloid-β peptides and thus can potentially inhibit the further aggregation of the amyloid-beta peptides by blocking their interactions. We found that the tryptophan modified LPFFD peptides had the best binding affinities. In most cases, the aromatic amino acids in the N-terminus of the modified peptides made more contacts with the fibrils than those in the C-terminus. We also found that increasing the aromatic content did not significantly improve the binding of the LPFFD peptide to the fibrils. Our study can serve as a basis for the design of novel peptide-based drugs for Alzheimer's disease in which aromatic interactions play an important role.
Collapse
Affiliation(s)
- Pavan Krishna Kanchi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
14
|
Mahmoudinobar F, Nilsson BL, Dias CL. Effects of Ions and Small Compounds on the Structure of Aβ 42 Monomers. J Phys Chem B 2021; 125:1085-1097. [PMID: 33481611 DOI: 10.1021/acs.jpcb.0c09617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aggregation of amyloid-β (Aβ) proteins in the brain is a hallmark of Alzheimer's disease. This phenomenon can be promoted or inhibited by adding small molecules to the solution where Aβ is embedded. These molecules affect the ensemble of conformations sampled by Aβ monomers even before aggregation starts. Here, we perform extensive all-atom replica exchange molecular dynamics (REMD) simulations to provide a comparative study of the ensemble of conformations sampled by Aβ42 monomers in solutions that promote (i.e., aqueous solution containing NaCl) and inhibit (i.e., aqueous solutions containing scyllo-inositol or 4-aminophenol) aggregation. Simulations performed in pure water are used as our reference. We find that secondary-structure content is only affected in an antagonistic manner by promoters and inhibitors at the C-terminus and the central hydrophilic core. Moreover, the end of the C-terminus binds more favorably to the central hydrophobic core region of Aβ42 in NaCl adopting a type of strand-loop-strand structure that is disfavored by inhibitors. Nonpolar residues that form the dry core of larger aggregates of Aβ42 (e.g., PDB ID 2BEG) are found at close proximity in these strand-loop-strand structures, suggesting that their formation could play an important role in initiating nucleation. In the presence of inhibitors, the C-terminus binds the central hydrophilic core with a higher probability than in our reference simulation. This sensitivity of the C-terminus, which is affected in an antagonistic manner by inhibitors and promoters, provides evidence for its critical role in accounting for aggregation.
Collapse
Affiliation(s)
- Farbod Mahmoudinobar
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
15
|
Man VH, He X, Ji B, Liu S, Xie XQ, Wang J. Introducing Virtual Oligomerization Inhibition to Identify Potent Inhibitors of Aβ Oligomerization. J Chem Theory Comput 2020; 16:3920-3935. [PMID: 32307994 DOI: 10.1021/acs.jctc.0c00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) oligomers are known as the most toxic form of Aβ peptides, and they are a major contributor to Alzheimer's disease. Therefore, developing antagonist screening methods for the formation of Aβ oligomers is urgent and of great interest. In this study, we introduce virtual oligomerization inhibition (VOI), a novel virtual screening protocol that applies atomistic simulation to quantitatively investigate the ability of a ligand in interfering Aβ oligomerization and the formation of Aβ oligomers. Results from the VOI performance on six known inhibitors of Aβ aggregation (brazilin, curcumin, EGCG, ELND005, resveratrol, and tacrine) are in excellent agreement with the results of expensive experiments. Moreover, VOI can reveal the mechanism and kinetics of the inhibition process at the atomistic level. VOI not only improves the efficiency of the antagonist screening for Aβ oligomerization but also reduces the cost of performing the task. Attractively, the principle of VOI can also be applied to inhibitor screening for the aggregation of other amyloid proteins/peptides.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shuhan Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
16
|
Polyproline chains destabilize the Alzheimer's amyloid-β protofibrils: A molecular dynamics simulation study. J Mol Graph Model 2019; 93:107456. [PMID: 31581064 DOI: 10.1016/j.jmgm.2019.107456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's is a fatal neurodegenerative disease for which there is no cure at present. The disease is characterized by the presence of plaques, principally comprising the amyloid-β peptide (viz., β-sheet) in the brains of a patient. In our present work, we study the interaction of these β-sheets with a different number of repeating units of proline (β-sheet breaker) by docking and all atom molecular dynamics simulations. Our results indicate that proline can break the amyloid protofibrils apart, cause them to break their β-sheet structure, and in some cases even induce the formation of 310 helices, which may be intermediates in the unfolding of these β-sheets. We have also observed that some of the important hydrogen bonds and salt bridges between chains were disrupted by proline and the tight interatomic packing of atoms in the fibrils was made relatively loose. Proline chains had a tendency to make several contacts with charged residues. Proline chains binded well to the fibrils by strong electrostatic interactions while hydrophobic interactions played a less important role. This leads to the conclusion that proline can break the amyloid fibrils apart and can be considered in the design of novel peptide-based drugs to treat Alzheimer's disease and potentially other diseases caused by the misfolding of proteins into β-sheets.
Collapse
|
17
|
Ghorbani M, Soleymani H, Allahverdi A, Shojaeilangari S, Naderi-Manesh H. Effects of natural compounds on conformational properties and hairpin formation of amyloid-β 42 monomer: docking and molecular dynamics simulation study. J Biomol Struct Dyn 2019; 38:3371-3383. [PMID: 31496378 DOI: 10.1080/07391102.2019.1664934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The β42 amyloid peptides (Aβ) are identified as a candidate target for Alzheimer's drugs. Phenolic compounds can bind to the Aβ and inhibit amyloid formation. However, the inhibitory mechanism of phenolic compounds remains unclear. In this study, the molecular dynamic simulation and docking program were used to characterize the molecular details of inhibitory mechanism of the phenolic compounds. Our Results show that the phenolic compounds can bind to hydrophobic region in Aβ42 monomer and alter hydrophobic interactions network at Aβ42 which play a key role in β-sheet formation. The cluster analysis and interactions network analysis were used to probe conformational changes in Aβ42. In most populated clusters of Aβ42-phenolic compounds complexes, the sheet structures were not observed or reduced. It seems that the binding of phenolic compounds can induce larger conformational diversity for amyloid peptide and changes conformational properties of amyloid peptide. The phenolic compounds can deform β-Hairpin structure of Aβ by destabilizing salt bridges E22-K28 and D23-K28 which can alter the conformation of Aβ42 in aqueous solution. These findings are in accordance with experimental results, to some extent give a molecular level interpretation for the inhibitory mechanism of phenolic compounds .In addition, this study may add important new details to the inhibitory mechanism of Alzheimer's drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Ghorbani
- Faculty of Biological Sciences, Biophysics Department, Tarbiat Modares University, Tehran, Iran
| | - Hossein Soleymani
- Faculty of Biological Sciences, Biophysics Department, Tarbiat Modares University, Tehran, Iran
| | - Abdollah Allahverdi
- Faculty of Biological Sciences, Biophysics Department, Tarbiat Modares University, Tehran, Iran
| | | | - Hossein Naderi-Manesh
- Faculty of Biological Sciences, Biophysics Department, Tarbiat Modares University, Tehran, Iran.,School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
18
|
Antosova A, Bednarikova Z, Koneracka M, Antal I, Marek J, Kubovcikova M, Zavisova V, Jurikova A, Gazova Z. Amino Acid Functionalized Superparamagnetic Nanoparticles Inhibit Lysozyme Amyloid Fibrillization. Chemistry 2019; 25:7501-7514. [DOI: 10.1002/chem.201806262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Andrea Antosova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Zuzana Bednarikova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Martina Koneracka
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Iryna Antal
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Jozef Marek
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Martina Kubovcikova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Vlasta Zavisova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Alena Jurikova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Zuzana Gazova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| |
Collapse
|
19
|
Zhang R, Zhang N, Mohri M, Wu L, Eckert T, Krylov VB, Antosova A, Ponikova S, Bednarikova Z, Markart P, Günther A, Norden B, Billeter M, Schauer R, Scheidig AJ, Ratha BN, Bhunia A, Hesse K, Enani MA, Steinmeyer J, Petridis AK, Kozar T, Gazova Z, Nifantiev NE, Siebert HC. Nanomedical Relevance of the Intermolecular Interaction Dynamics-Examples from Lysozymes and Insulins. ACS OMEGA 2019; 4:4206-4220. [PMID: 30847433 PMCID: PMC6398350 DOI: 10.1021/acsomega.8b02471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 06/01/2023]
Abstract
Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive. The knowledge of the intra- and intermolecular interaction profiles has cardinal importance for the design of encapsulation protocols. We have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and production with insulin or lysozyme-related protein encapsulation.
Collapse
Affiliation(s)
- Ruiyan Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ning Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
| | - Marzieh Mohri
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Lisha Wu
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Thomas Eckert
- Department
of Chemistry and Biology, University of
Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- Institut
für Veterinärphysiolgie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Vadim B. Krylov
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Andrea Antosova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Slavomira Ponikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Philipp Markart
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
- Pneumology,
Heart-Thorax-Center Fulda, Pacelliallee 4, 36043 Fulda, Germany
| | - Andreas Günther
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
| | - Bengt Norden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Martin Billeter
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 40530 Gothenburg, Sweden
| | - Roland Schauer
- Institute
of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Axel J. Scheidig
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Bhisma N. Ratha
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Anirban Bhunia
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Karsten Hesse
- Tierarztpraxis
Dr. Karsten Hesse, Rathausstraße
16, 35460 Stauffenberg, Germany
| | - Mushira Abdelaziz Enani
- Infectious
Diseases Division, Department of Medicine, King Fahad Medical City, P.O. Box 59046, 11525 Riyadh, Kingdom of Saudi
Arabia
| | - Jürgen Steinmeyer
- Laboratory
for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University, Paul-Meimberg-Str. 3, D-35392 Giessen, Germany
| | - Athanasios K. Petridis
- Neurochirurgische
Klinik, Universität Düsseldorf, Geb. 11.54, Moorenstraße 5, 40255 Düsseldorf, Germany
| | - Tibor Kozar
- Center
for Interdisciplinary Biosciences, TIP-UPJS, Jesenna 5, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Nikolay E. Nifantiev
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Hans-Christian Siebert
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
20
|
Melchor MH, Susana FG, Francisco GS, Hiram I B, Norma RF, Jorge A LR, Perla Y LC, Gustavo BI. Fullerenemalonates inhibit amyloid beta aggregation, in vitro and in silico evaluation. RSC Adv 2018; 8:39667-39677. [PMID: 35558050 PMCID: PMC9090717 DOI: 10.1039/c8ra07643j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/13/2018] [Indexed: 11/23/2022] Open
Abstract
The onset of Alzheimer's disease (AD) is associated with the presence of neurofibrillary pathology such as amyloid β (Aβ) plaques. Different therapeutic strategies have focused on the inhibition of Aβ aggregate formation; these pathological structures lead to neuronal disorder and cognitive impairment. Fullerene C60 has demonstrated the ability to interact and prevent Aβ fibril development; however, its low solubility and toxicity to cells remain significant problems. In this study, we synthesized, characterized and compared diethyl fullerenemalonates and the corresponding sodium salts, adducts of C60 bearing 1 to 3 diethyl malonyl and disodium malonyl substituents to evaluate the potential inhibitory effect on the aggregation of Aβ42 and their biocompatibility. The dose-dependent inhibitory effect of fullerenes on Aβ42 aggregation was studied using a thioflavin T fluorescent assay, and the IC50 value demonstrated a low range of fullerene concentration for inhibition, as confirmed by electron microscopy. The exposure of neuroblastoma to fullerenemalonates showed low toxicity, primarily in the presence of the sodium salt-adducts. An isomeric mixture of bisadducts, trisadducts and a C 3-symetrical trisadduct demonstrated the highest efficacy among the tests. In silico calculations were performed to complement the experimental data, obtaining a deeper understanding of the Aβ inhibitory mechanism; indicating that C 3-symetrical trisadduct interacts mainly with 1D to 16K residues of Aβ42 peptide. These data suggest that fullerenemalonates require specific substituents designed as sodium salt molecules to inhibit Aβ fibrillization and perform with low toxicity. These are promising molecules for developing future therapies involving Aβ aggregates in diseases such as AD and other types of dementia.
Collapse
Affiliation(s)
- Martínez-Herrera Melchor
- CONACYT, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
- Department of Natural Sciences, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
| | - Figueroa-Gerstenmaier Susana
- Department of Chemical, Electronic & Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato Loma del Bosque No.103, Lomas del Campestre León 37150 Guanajuato Mexico
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt D-64287 Darmstadt Germany
| | - García-Sierra Francisco
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Mexico City 07360 Mexico
| | - Beltrán Hiram I
- Department of Natural Sciences, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
| | - Rivera-Fernández Norma
- Department of Microbiology and Parasitology, School of Medicine, National Autonomous University of Mexico Ciudad de México 04510 Mexico
| | | | - López-Camacho Perla Y
- Department of Natural Sciences, Metropolitan Autonomous University Cuajimalpa Mexico City 05300 Mexico
| | - Basurto-Islas Gustavo
- Department of Chemical, Electronic & Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato Loma del Bosque No.103, Lomas del Campestre León 37150 Guanajuato Mexico
| |
Collapse
|
21
|
Tran L, Kaffy J, Ongeri S, Ha-Duong T. Binding Modes of a Glycopeptidomimetic Molecule on Aβ Protofibrils: Implication for Its Inhibition Mechanism. ACS Chem Neurosci 2018; 9:2859-2869. [PMID: 30025208 DOI: 10.1021/acschemneuro.8b00341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We recently reported that a glycopeptidomimetic molecule significantly delays the fibrillization process of Aβ42 peptide involved in Alzheimer's disease. However, the binding mode of this compound, named 3β, was not determined at the atomic scale, hindering our understanding of its mechanism of action and impeding structure-based design of new inhibitors. In the present study, we performed molecular docking calculations and molecular dynamics simulations to investigate the most probable structures of 3β complexed with Aβ protofibrils. Our results show that 3β preferentially binds to an area of the protofibril surface that coincides with the protofibril dimerization interface observed in the solid-state NMR structure 5KK3 from the PDB. Based on these observations, we propose a model of the inhibition mechanism of Aβ fibrillization by compound 3β.
Collapse
Affiliation(s)
- Linh Tran
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julia Kaffy
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Sandrine Ongeri
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| |
Collapse
|
22
|
Ryan P, Patel B, Makwana V, Jadhav HR, Kiefel M, Davey A, Reekie TA, Rudrawar S, Kassiou M. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:1530-1551. [PMID: 29782794 DOI: 10.1021/acschemneuro.8b00185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder accounting for 60-80% of dementia cases. For many years, AD causality was attributed to amyloid-β (Aβ) aggregated species. Recently, multiple therapies that target Aβ aggregation have failed in clinical trials, since Aβ aggregation is found in AD and healthy patients. Attention has therefore shifted toward the aggregation of the tau protein as a major driver of AD. Numerous inhibitors of tau-based pathology have recently been developed. Diagnosis of AD has shifted from measuring late stage senile plaques to early stage biomarkers, amyloid-β and tau monomers and oligomeric assemblies. Synthetic peptides and some derivative structures are being explored for use as theranostic tools as they possess the capacity both to bind the biomarkers and to inhibit their pathological self-assembly. Several studies have demonstrated that O-linked glycoside addition can significantly alter amyloid aggregation kinetics. Furthermore, natural O-glycosylation of amyloid-forming proteins, including amyloid precursor protein (APP), tau, and α-synuclein, promotes alternative nonamyloidogenic processing pathways. As such, glycopeptides and related peptidomimetics are being investigated within the AD field. Here we review advancements made in the last 5 years, as well as the arrival of sugar-based derivatives.
Collapse
Affiliation(s)
- Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Hemant R. Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani-333031, Rajasthan, India
| | - Milton Kiefel
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Andrew Davey
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Ulicna K, Bednarikova Z, Hsu WT, Holztragerova M, Wu JW, Hamulakova S, Wang SSS, Gazova Z. Lysozyme amyloid fibrillization in presence of tacrine/acridone-coumarin heterodimers. Colloids Surf B Biointerfaces 2018; 166:108-118. [DOI: 10.1016/j.colsurfb.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
24
|
Ponikova S, Kubackova J, Bednarikova Z, Marek J, Demjen E, Antosova A, Musatov A, Gazova Z. Inhibition of lysozyme amyloidogenesis by phospholipids. Focus on long-chain dimyristoylphosphocholine. Biochim Biophys Acta Gen Subj 2017; 1861:2934-2943. [DOI: 10.1016/j.bbagen.2017.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/15/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022]
|
25
|
Goyal D, Shuaib S, Mann S, Goyal B. Rationally Designed Peptides and Peptidomimetics as Inhibitors of Amyloid-β (Aβ) Aggregation: Potential Therapeutics of Alzheimer's Disease. ACS COMBINATORIAL SCIENCE 2017; 19:55-80. [PMID: 28045249 DOI: 10.1021/acscombsci.6b00116] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no clinically accepted treatment to cure or halt its progression. The worldwide effort to develop peptide-based inhibitors of amyloid-β (Aβ) aggregation can be considered an unplanned combinatorial experiment. An understanding of what has been done and achieved may advance our understanding of AD pathology and the discovery of effective therapeutic agents. We review here the history of such peptide-based inhibitors, including those based on the Aβ sequence and those not derived from that sequence, containing both natural and unnatural amino acid building blocks. Peptide-based aggregation inhibitors hold significant promise for future AD therapy owing to their high selectivity, effectiveness, low toxicity, good tolerance, low accumulation in tissues, high chemical and biological diversity, possibility of rational design, and highly developed methods for analyzing their mode of action, proteolytic stability (modified peptides), and blood-brain barrier (BBB) permeability.
Collapse
Affiliation(s)
- Deepti Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Suniba Shuaib
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Sukhmani Mann
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| |
Collapse
|
26
|
Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer's disease treatment. Biochim Biophys Acta Mol Basis Dis 2017; 1863:607-619. [DOI: 10.1016/j.bbadis.2016.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 12/30/2022]
|
27
|
Awasthi M, Singh S, Pandey VP, Dwivedi UN. Modulation in the conformational and stability attributes of the Alzheimer's disease associated amyloid-beta mutants and their favorable stabilization by curcumin: molecular dynamics simulation analysis. J Biomol Struct Dyn 2017; 36:407-422. [PMID: 28054501 DOI: 10.1080/07391102.2017.1279078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive accumulation of amyloid-beta (Aβ) peptides in brain. In the present study, two familial Aβ42 mutations, namely A2V (harmful) and A2T (protective) have been analyzed and compared with the wild-type (WT) by performing all-atom molecular dynamics (MD) simulations in the absence and presence of curcumin, a well-known inhibitor of Aβ plaque formation. Mutant A2V was found to exhibit highest stability followed by WT and mutant A2T in the absence of curcumin. This stability trend was found to be reversed in the presence of curcumin, suggesting a significant change in the conformational landscape of Aβ42 folding. Due to significant differences in the folding and interaction patterns of the mutants A2V and A2T, curcumin exhibited higher binding affinity for mutant A2T as compared to that of A2V. To the best of our knowledge, this is the first report on the effect of curcumin binding on structural landscapes of the two contrasting point mutants providing an understanding of the basis of Aβ plaque formation and its prevention by curcumin.
Collapse
Affiliation(s)
- Manika Awasthi
- a Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry , University of Lucknow , Lucknow 226007 , India
| | - Swati Singh
- a Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry , University of Lucknow , Lucknow 226007 , India
| | - Veda P Pandey
- a Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry , University of Lucknow , Lucknow 226007 , India
| | - Upendra N Dwivedi
- a Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry , University of Lucknow , Lucknow 226007 , India
| |
Collapse
|
28
|
Siposova K, Kozar T, Musatov A. Interaction of nonionic detergents with the specific sites of lysozyme amyloidogenic region - inhibition of amyloid fibrillization. Colloids Surf B Biointerfaces 2016; 150:445-455. [PMID: 27842932 DOI: 10.1016/j.colsurfb.2016.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/15/2022]
Abstract
Two nonionic detergents, Triton X-100 (TX-100) and n-dodecyl-β-d-maltoside (DDM) were tested for their ability to affect lysozyme amyloid aggregation. We have demonstrated that fibrillization of lysozyme is completely inhibited by low sub-micellar concentrations of both of these detergents. The apparent IC50 values were calculated to be 22μM and 26μM for TX-100 and DDM, respectively. The detergent/protein ratio is not the only parameter controlling inhibition. The precise timing of the detergent addition was found to be also crucial. It appears that the primary inhibitory activity of detergents resulted from inhibition of nuclei formation, in addition to inhibition of fibril polymerization at the early stage of protofibrils growth. The docking study revealed that Asn-59, Trp-63 and Ala-107, all present within the lysozyme amyloidogenic region, were involved in the interaction with both detergents. In addition, TX-100 also interacted with Gln-57 and Asp-103 within lysozyme. Moreover, based on our computational results, TX-100 bridges the Gln-57 and Ala-107 amino acids of the amyloidogenic segment of lysozyme and therefore inhibits more effectively the amyloid fibril formation. Along these lines, the knowledge gained from our study indicates that the detergents or their derivatives may be applicable as a promising strategy for the modulation of lysozyme protein aggregation.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia.
| | - Tibor Kozar
- Center for multimodal imaging, Institute of Physics, Faculty of Science, P.J. Safarik University, Srobarova 2, 041 54 Kosice, Slovakia
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| |
Collapse
|
29
|
Ratha BN, Ghosh A, Brender JR, Gayen N, Ilyas H, Neeraja C, Das KP, Mandal AK, Bhunia A. Inhibition of Insulin Amyloid Fibrillation by a Novel Amphipathic Heptapeptide: MECHANISTIC DETAILS STUDIED BY SPECTROSCOPY IN COMBINATION WITH MICROSCOPY. J Biol Chem 2016; 291:23545-23556. [PMID: 27679488 PMCID: PMC5095409 DOI: 10.1074/jbc.m116.742460] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/24/2016] [Indexed: 02/02/2023] Open
Abstract
The aggregation of insulin into amyloid fibers has been a limiting factor in the development of fast acting insulin analogues, creating a demand for excipients that limit aggregation. Despite the potential demand, inhibitors specifically targeting insulin have been few in number. Here we report a non-toxic and serum stable-designed heptapeptide, KR7 (KPWWPRR-NH2), that differs significantly from the primarily hydrophobic sequences that have been previously used to interfere with insulin amyloid fibrillation. Thioflavin T fluorescence assays, circular dichroism spectroscopy, and one-dimensional proton NMR experiments suggest KR7 primarily targets the fiber elongation step with little effect on the early oligomerization steps in the lag time period. From confocal fluorescence and atomic force microscopy experiments, the net result appears to be the arrest of aggregation in an early, non-fibrillar aggregation stage. This mechanism is noticeably different from previous peptide-based inhibitors, which have primarily shifted the lag time with little effect on later stages of aggregation. As insulin is an important model system for understanding protein aggregation, the new peptide may be an important tool for understanding peptide-based inhibition of amyloid formation.
Collapse
Affiliation(s)
| | | | - Jeffrey R Brender
- Radiation Biology Branch, National Institutes of Health, Bethesda, Maryland 20814
| | - Nilanjan Gayen
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | | | - Chilukoti Neeraja
- TIFR Centre for Interdisciplinary Sciences (TCIS), Narsingi, Hyderabad 500075, India, and
| | - Kali P Das
- Department of Chemistry, 93/1 APC Road, Bose Institute, Kolkata 700009, India
| | - Atin K Mandal
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | | |
Collapse
|
30
|
Chang YJ, Linh NH, Shih YH, Yu HM, Li MS, Chen YR. Alzheimer's Amyloid-β Sequesters Caspase-3 in Vitro via Its C-Terminal Tail. ACS Chem Neurosci 2016; 7:1097-106. [PMID: 27227450 DOI: 10.1021/acschemneuro.6b00049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Amyloid-β (Aβ), the main constituent in senile plaques found in the brain of patients with Alzheimer's disease (AD), is considered as a causative factor in AD pathogenesis. The clinical examination of the brains of patients with AD has demonstrated that caspase-3 colocalizes with senile plaques. Cellular studies have shown that Aβ can induce neuronal apoptosis via caspase-3 activation. Here, we performed biochemical and in silico studies to investigate possible direct effect of Aβ on caspase-3 to understand the molecular mechanism of the interaction between Aβ and caspase-3. We found that Aβ conformers can specifically and directly sequester caspase-3 activity in which freshly prepared Aβ42 is the most potent. The inhibition is noncompetitive, and the C-terminal region of Aβ plays an important role in sequestration. The binding of Aβ to caspase-3 was examined by cross-linking and proteolysis and by docking and all-atom molecular dynamic simulations. Experimental and in silico results revealed that Aβ42 exhibits a higher binding affinity than Aβ40 and the hydrophobic C-terminal region plays a key role in the caspase-Aβ interaction. Overall, our study describes a novel mechanism demonstrating that Aβ sequesters caspase-3 activity via direct interaction and facilitates future therapeutic development in AD.
Collapse
Affiliation(s)
- Yu-Jen Chang
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| | - Nguyen Hoang Linh
- Institute for Computational Science and Technology, SBI Building,
Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Yao Hsiang Shih
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| | - Hui-Ming Yu
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| | - Mai Suan Li
- Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Yun-Ru Chen
- Genomics
Research Center, Academia Sinica, Taiwan, 128, Academia Road, Sec. 2, Nankang
Dist., Taipei 115, Taiwan
| |
Collapse
|
31
|
Thai NQ, Tseng NH, Vu MT, Nguyen TT, Linh HQ, Hu CK, Chen YR, Li MS. Discovery of DNA dyes Hoechst 34580 and 33342 as good candidates for inhibiting amyloid beta formation: in silico and in vitro study. J Comput Aided Mol Des 2016; 30:639-50. [PMID: 27511370 PMCID: PMC5021751 DOI: 10.1007/s10822-016-9932-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/27/2016] [Indexed: 01/14/2023]
Abstract
Combining Lipinski's rule with the docking and steered molecular dynamics simulations and using the PubChem data base of about 1.4 million compounds, we have obtained DNA dyes Hoechst 34580 and Hoechst 33342 as top-leads for the Alzheimer's disease. The binding properties of these ligands to amyloid beta (Aβ) fibril were thoroughly studied by in silico and in vitro experiments. Hoechst 34580 and Hoechst 33342 prefer to locate near hydrophobic regions with binding affinity mainly governed by the van der Waals interaction. By the Thioflavin T assay, it was found that the inhibition constant IC50 ≈ 0.86 and 0.68 μM for Hoechst 34580 and Hoechst 33342, respectively. This result qualitatively agrees with the binding free energy estimated using the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulations with the AMBER-f99SB-ILDN force field and water model TIP3P. In addition, DNA dyes have the high capability to cross the blood brain barrier. Thus, both in silico and in vitro experiments have shown that Hoechst 34580 and 33342 are good candidates for treating the Alzheimer's disease by inhibiting Aβ formation.
Collapse
Affiliation(s)
- Nguyen Quoc Thai
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Vietnam
- Division of Theoretical Physics, Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap Vietnam
| | - Ning-Hsuan Tseng
- Genomics Research Center, Academia Sinica, Academia Rd., Sec. 2, Nankang Dist., Taipei 115, Taiwan
| | - Mui Thi Vu
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Tin Trung Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Huynh Quang Linh
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Vietnam
| | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, 128 Academia Road Section 2, Taipei, 11529 Taiwan
- National Center for Theoretical Sciences, National Tsing Hua University, 101 Kuang-Fu Road Section 2, Hsinch, 30013 Taiwan
- Business School, University of Shanghai for Science and Technology, 334 Jun Gong Road, Shanghai, 200093 China
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Academia Rd., Sec. 2, Nankang Dist., Taipei 115, Taiwan
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
32
|
Bednarikova Z, Huy PDQ, Mocanu MM, Fedunova D, Li MS, Gazova Z. Fullerenol C60(OH)16 prevents amyloid fibrillization of Aβ40-in vitro and in silico approach. Phys Chem Chem Phys 2016; 18:18855-67. [PMID: 27350395 DOI: 10.1039/c6cp00901h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generation of Aβ amyloid aggregates in the form of senile plaques in the brain is one of the pathological hallmarks of Alzheimer's disease (AD). There is no cure for AD and one of the recent treatment strategies is focused on the inhibition of amyloid fibrillization of Aβ peptide. Fullerene C60 has been proposed as a candidate for destroying Aβ aggregates but it is not soluble in water and its toxicity to cells remains largely ambiguous. To overcome these drawbacks, we synthesized and studied the effect of water-soluble fullerenol C60(OH)16 (fullerene C60 carrying 16 hydroxyl groups) on the amyloid fibrillization of Aβ40 peptide in vitro. Using a Thioflavin T fluorescent assay and atomic force microscopy it was found that C60(OH)16 effectively reduces the formation of amyloid fibrils. The IC50 value is in the low range (μg ml(-1)) suggesting that fullerenol interferes with Aβ40 aggregation at stoichiometric concentrations. The in silico calculations supported the experimental data. It was revealed that fullerenol tightly binds to monomer Aβ40 and polar, negatively charged amino acids play a key role. Electrostatic interactions dominantly contribute to the binding propensity via interaction of the oxygen atoms from the COO(-) groups of side chains of polar, negatively charged amino acids with the OH groups of fullerenol. This stabilizes contact with either the D23 or K28 of the salt bridge. Due to the lack of a well-defined binding pocket fullerenol is also inclined to locate near the central hydrophobic region of Aβ40 and can bind to the hydrophobic C-terminal of the peptide. Upon fullerenol binding the salt bridge becomes flexible, inhibiting Aβ aggregation. In order to assess the toxicity of fullerenol, we found that exposure of neuroblastoma SH-SY5Y cells to fullerenol caused no significant changes in viability after 24 h of treatment. These results suggest that fullerenol C60(OH)16 represents a promising candidate as a therapeutic for Alzheimer's disease.
Collapse
Affiliation(s)
- Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia.
| | | | | | | | | | | |
Collapse
|
33
|
Ngo ST, Fang ST, Huang SH, Chou CL, Huy PDQ, Li MS, Chen YC. Anti-arrhythmic Medication Propafenone a Potential Drug for Alzheimer's Disease Inhibiting Aggregation of Aβ: In Silico and in Vitro Studies. J Chem Inf Model 2016; 56:1344-56. [PMID: 27304669 DOI: 10.1021/acs.jcim.6b00029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia caused by the formation of Aβ aggregates. So far, no effective medicine for the treatment of AD is available. Many efforts have been made to find effective medicine to cope with AD. Curcumin is a drug candidate for AD, being a potent anti-amyloidogenic compound, but the results of clinical trials for it were either negative or inclusive. In the present study, we took advantages from accumulated knowledge about curcumin and have screened out four compounds that have chemical and structural similarity with curcumin more than 80% from all FDA-approved oral drugs. Using all-atom molecular dynamics simulation and the free energy perturbation method we showed that among predicted compounds anti-arrhythmic medication propafenone shows the best anti-amyloidogenic activity. The in vitro experiment further revealed that it can inhibit Aβ aggregation and protect cells against Aβ induced cytotoxicity to almost the same extent as curcumin. Our results suggest that propafenone may be a potent drug for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Son Tung Ngo
- Institute for Computational Science and Technology , Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.,Institute of Physics, Polish Academy of Sciences , Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | | | | | - Chao-Liang Chou
- Department of Neurology, Mackay Memorial Hospital , New Taipei City, 252 Taiwan
| | - Pham Dinh Quoc Huy
- Institute for Computational Science and Technology , Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.,Institute of Physics, Polish Academy of Sciences , Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences , Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | | |
Collapse
|
34
|
Kar RK, Gazova Z, Bednarikova Z, Mroue KH, Ghosh A, Zhang R, Ulicna K, Siebert HC, Nifantiev NE, Bhunia A. Evidence for Inhibition of Lysozyme Amyloid Fibrillization by Peptide Fragments from Human Lysozyme: A Combined Spectroscopy, Microscopy, and Docking Study. Biomacromolecules 2016; 17:1998-2009. [DOI: 10.1021/acs.biomac.6b00165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajiv K. Kar
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Zuzana Gazova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Medical and Clinical Biochemistry Faculty of Medicine, Safarik University, Trieda SNP 1, 040 11 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, Safarik University, Srobarova 2, 041 54 Kosice, Slovakia
| | - Kamal H. Mroue
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anirban Ghosh
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Ruiyan Zhang
- RI-B-NT Research
Institute
of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Katarina Ulicna
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Institute
of Biology and Ecology, Faculty of Science, Safarik University, Srobarova 2, 041 54 Kosice, Slovakia
| | - Hans-Christian Siebert
- RI-B-NT Research
Institute
of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Nikolay E. Nifantiev
- N.
D. Zellinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Anirban Bhunia
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| |
Collapse
|