1
|
Yang J, Li Q, Guo M, Yan L, Zhu L, Zhao J, Hu G, Yin H, Shi Y. Unveiling the ESIPT Luminescence Mechanism of 4'-N,N-Diethylamino-3-Hydroxyflavone in Ionic Liquid: A Computational Study. Molecules 2025; 30:1381. [PMID: 40142156 PMCID: PMC11945155 DOI: 10.3390/molecules30061381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/08/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Excited state intramolecular proton transfer (ESIPT) within molecules in solvents plays important roles in photo-chemistry and photo-biology. Herein, the influence of 1-ethyl-3-methyl-imidazolium bis (trifluoromethylsulfonyl) imide ([EMIm][NTf2]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) on the ESIPT of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) was explored. The density functional theory and time-dependent density functional theory methodologies were used. The calculated fluorescence spectrum reveals that the fluorescence peaks of DEAHF in [EMIm][NTf2] and [BMIm][PF6] originate from the emission of N* and T* forms. The structure's optimization, infrared spectra, non-covalent interactions and the scanning of potential energy curves collectively demonstrate that the ESIPT of DEAHF likely happen more in [EMIm][NTf2] than in [BMIm][PF6]. The solvation effects in [BMIm][PF6] exhibit greater prominence compared to those in [EMIm][NTf2], as evidenced by the free energy curve. The alterations in dipole moment indicate a substantial solvation relaxation during the ESIPT processes. Our aforementioned research offers backing for the advancement of novel fluorescent probes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; (J.Y.); (Q.L.); (M.G.); (L.Y.); (L.Z.); (J.Z.); (G.H.)
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; (J.Y.); (Q.L.); (M.G.); (L.Y.); (L.Z.); (J.Z.); (G.H.)
| |
Collapse
|
2
|
Yadav J, Bhattacharya S, Chaudhary RP. Synthesis and Excited State Proton Transfer (ESPT) Studies of 2-(6-Substitutedbenzo[d]Thiazol-2-Yl)Naphthalen-1-Ol Derivatives. J Fluoresc 2024:10.1007/s10895-024-04072-2. [PMID: 39702832 DOI: 10.1007/s10895-024-04072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
This study reports the rapid intramolecular proton transfer studies upon photo excitation of 2-(benzo[d]thiazol-2-yl)naphthalene-1-ol derivatives, yielding tautomer emission with large Stokes shift. Employing photophysical studies, density functional theory (DFT) and, time-dependent density functional theory (TD-DFT) methods, we scrutinize excited state intramolecular proton transfer (ESIPT) modulation over varying solvent polarities. Analysis of UV-Visible and fluorescence spectra, alongside exploration of hydrogen bond dynamics, reveals solvation effects on the excited state proton transfer process. Theoretical vibrational spectra confirm enhanced hydrogen bond strength in the excited state which is sensitive to the solvent polarity. Energy profile curves and the scatter graph depict impact of solvent polarity on ESIPT. Additionally, molecular interactions and X-ray diffraction studies of the title compound 4a are presented.
Collapse
Affiliation(s)
- Jyoti Yadav
- Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab, 148106, India
| | | | - Ram Pal Chaudhary
- Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab, 148106, India.
| |
Collapse
|
3
|
Samanta T, Mandal S, Karmakar A, Pramanik A, Kundu R, Begum NA. An insight into the role of ESIPT/TICT-based antioxidant flavone analogues in fluoro-probing diabetes-induced viscosity changes: a unified experimental and theoretical endeavour. Photochem Photobiol Sci 2024:10.1007/s43630-024-00630-6. [PMID: 39249169 DOI: 10.1007/s43630-024-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Potent antioxidants, like 3-hydroxy flavones, attracted considerable attention due to their excited state intramolecular proton transfer (ESIPT)-based fluorescence behaviour. This article is an interesting demonstration of a series of synthetic 3-hydroxy flavone analogues having high antioxidant activity as molecular rotor-like viscosity probes. Among these flavone analogues, 4'-N,N-dimethylamino-3-hydroxy flavone (3) is the most potent one, showing the twisted intramolecular charge transfer (TICT)-dependent fluoroprobing activity toward the blood viscosity changes associated with diabetes and free fatty acids (FFA)-induced nuclear viscosity changes of MIN6 cells. The TICT dynamics of (3), which instigates its viscosity probing activity, was comprehended with the help of DFT-based computational studies. Abnormal cellular viscosity changes are the pathological traits for various diseases, and non-toxic flavone-based viscosity probes can be useful for diagnosing such pathological conditions.
Collapse
Affiliation(s)
- Trisha Samanta
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan, 731235, West Bengal, India
| | - Samanwita Mandal
- Department of Zoology, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan, 731235, West Bengal, India
| | - Abhijit Karmakar
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan, 731235, West Bengal, India.
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, West Bengal, India
| | - Rakesh Kundu
- Department of Zoology, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan, 731235, West Bengal, India.
| | - Naznin Ara Begum
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati (Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
4
|
Li N, Chen Z, Zhan Y, Deng W, Lv T, Xu Z, Wang L, Liu B. Anti-cancer drug axitinib: a unique tautomerism-induced dual-emissive probe for protein analysis. Chem Commun (Camb) 2024; 60:6138-6141. [PMID: 38804199 DOI: 10.1039/d4cc01944j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A commercial anti-cancer drug, axitinib, exhibits very stable dual emissions for discrimination of human serum albumin.
Collapse
Affiliation(s)
- Na Li
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Zihao Chen
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Yilin Zhan
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Weihua Deng
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Zhongyong Xu
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Lei Wang
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Bin Liu
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
5
|
MENGEŞ N. Heterocyclic molecules with ESIPT emission: synthetic approaches, molecular diversities, and application strategies. Turk J Chem 2023; 47:888-909. [PMID: 38173742 PMCID: PMC10760871 DOI: 10.55730/1300-0527.3585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
Excited-state intramolecular proton transfer (ESIPT) is one of the most essential emission processes in most circumstances because of its dual emission band in most cases and its high Stokes shifts. These distinguishing properties make ESIPT-based probes more suitable for a variety of applications, including analyte sensors, solid-state sensing mechanisms, optical technologies, and biomarkers for endogenous or exogenous compounds in various settings. As a result, researchers around the world are working on ESIPT emissions and developing different scaffolds for various applications or industry demands. This field of study is rapidly expanding and there is a need for an up-to-date review of synthesis methodologies and applications. This paper provides the highlights of ESIPT-based heterocyclic scaffolds, synthesis strategies, and application scenarios in the literature from 2017 to 2023.
Collapse
Affiliation(s)
- Nurettin MENGEŞ
- Science and Technology Research and Application Center (BİTAM), Necmettin Erbakan University, Konya,
Turkiye
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya,
Turkiye
| |
Collapse
|
6
|
Feng Y, Huang X, Lv M, Yu Y, Jiang G, He H, Liu J. The two-pronged approach of heteroatoms and substituents to achieve a synergistic regulation of the ESIPT process in amino 2-(2'-hydroxyphenyl)benzoxazole derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122318. [PMID: 36623347 DOI: 10.1016/j.saa.2023.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Amino 2-(2'-hydroxyphenyl)benzazole derivatives are a class of molecules with excellent photophysical properties. Most of them can be applied as a fluorescent probe via the excited-state intramolecular proton transfer (ESIPT) process. In this work, we focus on the effects of heteroatoms (O, S) and substituents (acetylacetone, hydrogen) in the derivatives. Using DFT/TDDFT methods with the B3LYP-D3BJ functionals, the absorption and emission peaks are in good agreement with the experimental data. Results of optimized structures, infrared vibrational spectra, and reduced density gradient present the existence of the ESIPT process in the S1 state in these molecules, it also indirectly shows that the heteroatom S is more than O, and the substituent acetylacetone is more than hydrogen has stronger hydrogen bonds. The proton transfer (PT) potential energy curves (PECs) qualitatively show that it is easier for the heteroatom S to induce ESIPT than that of O. The same for the substituent acetylacetone than that of hydrogen. Under the joint influence of the simultaneous stacking of heteroatom S and acetylacetone substituent, the energy barrier of the PT process can be effectively lowered, realizing a synergistic strategy, which can provide some guidance for the design of fluorescent materials.
Collapse
Affiliation(s)
- Yu Feng
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Xindi Huang
- Guangxi Institute of Metrology and Test, Nanning 530004, PR China
| | - Meiheng Lv
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Yan Yu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Gaoshang Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haixiang He
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, PR China.
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
7
|
Yang WY, Yan CC, Wang XD, Liao LS. Recent progress on the excited-state multiple proton transfer process in organic molecules. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Dutta S, Basu N, Mandal D. ESIPT in a Binary Mixture of Non-Polar and Protic Polar Solvents : Role of Solvation Dynamics. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
A novel flavonol-based colorimetric and turn-on fluorescent probe for rapid determination of hydrazine in real water samples and its bioimaging in vivo and in vitro. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Russo M, Orel V, Štacko P, Šranková M, Muchová L, Vítek L, Klán P. Structure–Photoreactivity Relationship of 3-Hydroxyflavone-Based CO-Releasing Molecules. J Org Chem 2022; 87:4750-4763. [DOI: 10.1021/acs.joc.2c00032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marina Russo
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Orel
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Peter Štacko
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Mária Šranková
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Prague 2, Czech Republic
| | - Lucie Muchová
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Prague 2, Czech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Prague 2, Czech Republic
- Fourth Department of Internal Medicine, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
11
|
Chaihan K, Bui TT, Goubard F, Kungwan N. Tunable keto emission of 2-(2′-hydroxyphenyl)benzothiazole derivatives with π-expansion, substitution and additional proton transfer site for excited-state proton transfer-based fluorescent probes: Theoretical insights. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
The effect of ring aromaticity on ESIPT behavior and photophysical properties of 2-(2′-hydroxyphenyl)- 4-chloromethylthiazole derivatives: A TD-DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Aswathy LB, Deepthi A, Jayasree EG. An insight into the dual fluorescence of 3,6-dihydroxybenzene-1,2,4,5-tetracarboxylic acid tetraethyl ester - An experimental and theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119496. [PMID: 33530030 DOI: 10.1016/j.saa.2021.119496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The Excited State Intramolecular Proton Transfer (ESIPT) phenomenon involving photo-induced keto-enol tautomerization is known to cause significant variations in the excited state structures and photophysical properties of certain molecules. Here, the dual emission exhibited by 3,6-dihydroxybenzene-1,2,4,5-tetracarboxylic acid tetraethyl ester has been studied both experimentally and theoretically and it is concluded that the second emission is due to ESIPT in polar protic solvents, while it is due to dianion formation in solvents like DMSO and DMF.
Collapse
Affiliation(s)
- L B Aswathy
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Ani Deepthi
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India.
| | - E G Jayasree
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
14
|
Das K, Sappati S, Bisht GS, Hazra P. Proton-Coupled Electron Transfer in the Aqueous Nanochannels of Lyotropic Liquid Crystals: Interplay of H-Bonding and Polarity Effects. J Phys Chem Lett 2021; 12:2651-2659. [PMID: 33689368 DOI: 10.1021/acs.jpclett.1c00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A molecular-level description of the aqueous nanochannels in lyotropic liquid crystals (LLCs) is crucial for their widespread utilization in diverse fields. Herein, the polarity and hydrogen bonding effects of LLC water molecules have been simultaneously explored using a single probe, 4'-N,N-dimethylamino-3-hydroxyflavone (DMA3HF), by the unique multiparametric sensitivity of the excited state proton-coupled electron transfer (PCET) phenomenon. The decreased ESIPT efficiency and the significantly retarded ESIPT dynamics (>20 times) of DMA3HF in the LLC phases suggests the dominant influence of strong hydrogen-bonded solute-solvent complexes that leads to a high activation barrier for ESIPT in the mesophases. The effects of hydrogen bonding on ESIPT have been elucidated by enhanced sampling techniques based on classical MD simulations of DMA3HF in explicit water. ESIPT via an extended hydrogen-bonded water wire is associated with a significantly high ESIPT activation barrier, substantiating the experimentally observed slow ESIPT dynamics inside the LLCs.
Collapse
Affiliation(s)
- Konoya Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | | | - Girish Singh Bisht
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
15
|
Effect of Water Microsolvation on the Excited-State Proton Transfer of 3-Hydroxyflavone Enclosed in γ-Cyclodextrin. Molecules 2021; 26:molecules26040843. [PMID: 33562757 PMCID: PMC7914428 DOI: 10.3390/molecules26040843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
The effect of microsolvation on excited-state proton transfer (ESPT) reaction of 3-hydroxyflavone (3HF) and its inclusion complex with γ-cyclodextrin (γ-CD) was studied using computational approaches. From molecular dynamics simulations, two possible inclusion complexes formed by the chromone ring (C-ring, Form I) and the phenyl ring (P-ring, Form II) of 3HF insertion to γ-CD were observed. Form II is likely more stable because of lower fluctuation of 3HF inside the hydrophobic cavity and lower water accessibility to the encapsulated 3HF. Next, the conformation analysis of these models in the ground (S0) and the first excited (S1) states was carried out by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, respectively, to reveal the photophysical properties of 3HF influenced by the γ-CD. The results show that the intermolecular hydrogen bonding (interHB) between 3HF and γ-CD, and intramolecular hydrogen bonding (intraHB) within 3HF are strengthened in the S1 state confirmed by the shorter interHB and intraHB distances and the red-shift of O–H vibrational modes involving in the ESPT process. The simulated absorption and emission spectra are in good agreement with the experimental data. Significantly, in the S1 state, the keto form of 3HF is stabilized by γ-CD, explaining the increased quantum yield of keto emission of 3HF when complexing with γ-CD in the experiment. In the other word, ESPT of 3HF is more favorable in the γ-CD hydrophobic cavity than in aqueous solution.
Collapse
|
16
|
Chumak AY, Mudrak VO, Kotlyar VM, Doroshenko AO. 4’-Nitroflavonol fluorescence: Excited state intramolecular proton transfer reaction from the non-emissive excited state. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Concilio S, Di Martino M, Nardiello AM, Panunzi B, Sessa L, Miele Y, Rossi F, Piotto S. A Flavone-Based Solvatochromic Probe with A Low Expected Perturbation Impact on the Membrane Physical State. Molecules 2020; 25:E3458. [PMID: 32751363 PMCID: PMC7436088 DOI: 10.3390/molecules25153458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022] Open
Abstract
The study of the cell membrane is an ambitious and arduous objective since its physical state is regulated by a series of processes that guarantee its regular functionality. Among the different methods of analysis, fluorescence spectroscopy is a technique of election, non-invasive, and easy to use. Besides, molecular dynamics analysis (MD) on model membranes provides useful information on the possibility of using a new probe, following its positioning in the membrane, and evaluating the possible perturbation of the double layer. In this work, we report the rational design and the synthesis of a new fluorescent solvatochromic probe and its characterization in model membranes. The probe consists of a fluorescent aromatic nucleus of a 3-hydroxyflavone moiety, provided with a saturated chain of 18 carbon atoms and a zwitterionic head so to facilitate the anchoring to the polar heads of the lipid bilayer and avoid the complete internalization. It was possible to study the behavior of the probe in GUV model membranes by MD analysis and fluorescence microscopy, demonstrating that the new probe can efficiently be incorporated in the lipid bilayer, and give a color response, thanks to is solvatochromic properties. Moreover, MD simulation of the probe in the membrane supports the hypothesis of a reduced perturbation of the membrane physical state.
Collapse
Affiliation(s)
- Simona Concilio
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Miriam Di Martino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.M.); (A.M.N.); (L.S.)
| | - Anna Maria Nardiello
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.M.); (A.M.N.); (L.S.)
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, 80055 Portici, Italy;
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.M.); (A.M.N.); (L.S.)
| | - Ylenia Miele
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy;
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences “DEEP Sciences”, University of Siena, 53100 Siena, Italy;
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.M.); (A.M.N.); (L.S.)
| |
Collapse
|
18
|
Mishra VR, Ghanavatkar CW, Sekar N. Towards NIR‐Active Hydroxybenzazole (HBX)‐Based ESIPT Motifs: A Recent Research Trend. ChemistrySelect 2020. [DOI: 10.1002/slct.201904558] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Virendra R. Mishra
- Department of Dyestuff Technology Institute of Chemical Technology (ICT), Matunga, Mumbai India
| | | | - Nagaiyan Sekar
- Department of Dyestuff Technology Institute of Chemical Technology (ICT), Matunga, Mumbai India
| |
Collapse
|
19
|
Tang W, Yu H, Cai C, Zhao T, Lu C, Zhao S, Lu X. Solvent effects on a derivative of 1,3,4-oxadiazole tautomerization reaction in water: A reaction density functional theory study. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Chen Y, Piao Y, Feng X, Yu X, Jin X, Zhao G. Excited state intramolecular proton transfer (ESIPT) luminescence mechanism for 4-N,N-diethylamino-3-hydroxyflavone in propylene carbonate, acetonitrile and the mixed solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117416. [PMID: 31394389 DOI: 10.1016/j.saa.2019.117416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
In this work, density functional theory (DFT) and time density functional theory (TDDFT) methods were employed to investigate the nature of the double fluorescence emission of DEAHF in these three solvents. We analyzed the geometric structures, vibrational frequencies, frontier molecular orbitals (MOs), molecular electrostatic potential surface (MEPS), calculated absorption and fluorescence spectra and the potential-energy curves for DEAHF. All the results show that the intramolecular hydrogen bond of DEAHF is strengthened from S0 to S1 and the electron density redistribution occurs between the proton acceptor and donor, which can facilitate ESIPT. Moreover, the geometric structures, absorption and emission spectra, MEPS and potential-energy curve of DEAHF are identical. It reveals theoretically that ACN and PC can maintain the polarity of the solvent with 1:1 mixing, which is consistent with the experimental results.
Collapse
Affiliation(s)
- Yan Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yongzhe Piao
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; College of Life Sciences, Dalian Nationalities University, Dalian 116600, China.
| | - Xia Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Xiaoning Jin
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
21
|
Das K, Sappati S, Hazra P. Peculiar hydrogen bonding behaviour of water molecules inside the aqueous nanochannels of lyotropic liquid crystals. Phys Chem Chem Phys 2020; 22:6210-6221. [DOI: 10.1039/c9cp06405b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The hydrogen bonding abilities of the LLC water molecules and their effects on intramolecular hydrogen bonds of the target probe molecules.
Collapse
Affiliation(s)
- Konoya Das
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune
- India
| | - Subrahmanyam Sappati
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune
- India
| | - Partha Hazra
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune
- India
- Centre for Energy Science
| |
Collapse
|
22
|
4’-Methoxy-3-hydroxyflavone excited state intramolecular proton transfer reaction in alcoholic solutions: Intermolecular versus intramolecular hydrogen bonding effect. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Antioxidant flavone functionalized fluorescent and biocompatible metal nanoparticles: Exploring their efficacy as cell imaging agents. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Dey N, Biswakarma D, Bajpai A, Moorthy JN, Bhattacharya S. Modulation of Excited-State Proton-Transfer Dynamics inside the Nanocavity of Microheterogeneous Systems: Microenvironment-Sensitive Förster Energy Transfer to Riboflavin. Chemphyschem 2019; 20:881-889. [PMID: 30548519 DOI: 10.1002/cphc.201801085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/15/2018] [Indexed: 12/11/2022]
Abstract
The excited-state proton-transfer efficiency of a tetraarylpyrene derivative, 1,3,6,8-tetrakis(4-hydroxy-2,6-dimethylphenyl)pyrene (TDMPP), was investigated thoroughly in the presence of various surfactant assemblies, such as micelles and vesicles. The confined microheterogeneous environments can significantly retard the extent of the excited-state proton-transfer process, resulting in a distinguishable optical signal compared to that in the bulk medium. Physical characteristics of the surfactant assemblies, such as order, interfacial hydration, and surface charge, influence the proton transfer process and allow multiparametric sensing. A higher degree of interfacial hydration facilitates the proton-transfer process, while the positively charged head groups of the surfactants specifically stabilize the anionic form of the probe (TDMPP-O*). Furthermore, Forster energy transfer from the probe to riboflavin was studied in a phospholipid membrane, wherein the relative ratio of the neutral versus anionic forms (TDMPP-OH/TDMPP-O*) was found to influence the extent of energy transfer. Overall, we demonstrate how an ultrafast photophysical process, that is, the excited-state proton transfer, can be influenced by the microenvironment.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Dipen Biswakarma
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Alankriti Bajpai
- Department of Chemistry, Indian Institute of Technology Kalyanpur, Kanpur, Uttar Pradesh, 208016
| | - Jarugu Narasimha Moorthy
- Department of Chemistry, Indian Institute of Technology Kalyanpur, Kanpur, Uttar Pradesh, 208016
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India.,Current Address: Director's Research Unit, Indian Association for Cultivation of Science, Kolkata, 700032, India
| |
Collapse
|
25
|
Basu N, Mandal D. Time-dependent emission stokes shift in Au, Ag and Au/Ag fluorescent nanoclusters: evidence of multiple emissive states. Photochem Photobiol Sci 2019; 18:1782-1792. [PMID: 31115403 DOI: 10.1039/c8pp00540k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Au, Ag and bimetallic Au/Ag nanoclusters were prepared under similar microwave-irradiated synthesis conditions in aqueous solutions, using BSA as a stabilizer. The nanoclusters exhibited strong fluorescence with characteristic emission spectral peak features that suggested the presence of multiple emissive states in each case. Time-resolved emission studies revealed the very rare incidence of the time-dependent emission Stokes shift in metal nanoclusters over a time-scale of ∼10 ns. The shifts were of varying degrees: ∼200 cm-1 for Ag, ∼750 cm-1 for Au and ∼1400 cm-1 for Au/Ag nanoclusters. Application of the Time-Resolved Area Normalized Emission Spectra (TRANES) method confirmed the existence of multiple emissive species in each of the nanoclusters, which also helped to explain the time-dependent emission Stokes shift.
Collapse
Affiliation(s)
- Nabaruna Basu
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| | - Debabrata Mandal
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| |
Collapse
|
26
|
Hessz D, Bojtár M, Mester D, Szakács Z, Bitter I, Kállay M, Kubinyi M. Hydrogen bonding effects on the fluorescence properties of 4'-diethylamino-3-hydroxyflavone in water and water-acetone mixtures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:96-105. [PMID: 29860173 DOI: 10.1016/j.saa.2018.05.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
The fluorescence properties of 4'-diethylamino-3-hydroxyflavone (FET), a dye probe sensitive to the polarity as well as the hydrogen bonding ability of its environment, have been studied in acetone-water mixtures by measuring spectra and decay curves over the whole composition range and analyzing the results on the basis of theoretical calculations. In acetone, like in most of organic solvents, the dye showed dual fluorescence, due to an excited state intramolecular proton transfer (ESIPT), in which a quasi-equilibrium between the two excited species, N* and T*, was reached. In acetone-water mixtures with lower molar fractions of water, where the water molecules are largely dispersed, only one type of hydrate could be detected, a complex with 1:1 composition, showing only N* emission, but with a high (0.45) fluorescence quantum yield. At higher water concentrations, the interaction of FET with the hydrogen-bonded water clusters resulted in fluorescence quenching. In neat water the fluorescence quantum yield fell to ~0.001. Theoretical calculations on a FET-acetone complex, a FET-water complex and a FET-water-acetone triple complex (the latter as model for the samples with low water concentrations) concluded that ESIPT was energetically favored in all the models, but the E(N*)-E(T*) energy difference for the water complexes was much lower. The kinetic barrier of ESIPT was found greatly higher in the FET-water complex than in the isolated solute. The intermolecular hydrogen bonds in the water complexes became significantly stronger following the excitation, stabilizing the N* form of the hydrated dye.
Collapse
Affiliation(s)
- Dóra Hessz
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1519 Budapest, P.O. Box 286, Hungary
| | - Márton Bojtár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Dávid Mester
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Zoltán Szakács
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - István Bitter
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Miklós Kubinyi
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1519 Budapest, P.O. Box 286, Hungary; Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary.
| |
Collapse
|
27
|
Kuang Z, Guo Q, Wang X, Song H, Maroncelli M, Xia A. Ultrafast Ground-State Intramolecular Proton Transfer in Diethylaminohydroxyflavone Resolved with Pump-Dump-Probe Spectroscopy. J Phys Chem Lett 2018; 9:4174-4181. [PMID: 29991264 DOI: 10.1021/acs.jpclett.8b01826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
4'- N, N-Diethylamino-3-hydroxyflavone (DEAHF), due to excited-state intramolecular proton transfer (ESIPT) reaction, exhibits two solvent-dependent emission bands. Because of the slow formation and fast decay of the ground-state tautomer, its population does not accumulate enough for its detection during the normal photocycle. As a result, the details of the ground-state intramolecular proton-transfer (GSIPT) reaction have remained unknown. The present work uses femtosecond pump-dump-probe spectroscopy to prepare the short-lived ground-state tautomer and track this GSIPT process in solution. By simultaneously measuring femtosecond pump-probe and pump-dump-probe spectra, ultrafast kinetics of the ESIPT and GSIPT reactions are obtained. The GSIPT reaction is shown to be a solvent-dependent irreversible two-state process in two solvents, with estimated time constants of 1.7 ps in toluene and 10 ps in the more polar tetrahydrofuran. These results are of great value in both fully describing the photocycle of this four-level proton transfer molecule and for providing a deeper understanding of dynamical solvent effects on tautomerization.
Collapse
Affiliation(s)
- Zhuoran Kuang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Qianjin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Xian Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hongwei Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Mark Maroncelli
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
28
|
Li D, Xing Y, Ding L, Wu C, Hou G, Song B. Tuning the emission of a water-soluble 3-hydroxyflavone derivative by host-guest complexation. SOFT MATTER 2018; 14:4231-4237. [PMID: 29624193 DOI: 10.1039/c8sm00349a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
3-Hydroxyflavone derivatives have great potential as fluorescent probes for bio-labeling in aqueous medium. They were extensively studied in various organic solvents for the "excited state intramolecular proton transfer" process, but seldom addressed in aqueous solution due to the poor water solubility. Herein, an amphiphilic molecule bearing 3-hydroxyflavone and oligo(ethylene oxide) (denoted as 3HF-EO) was designed and synthesized. Different from the fluorescence in organic solvents, 3HF-EO in aqueous solution showed a remarkable single fluorescence emission, which is ascribed to the fluorescence of its anionic species. We found that the fluorescence intensity could be efficiently tuned via host-guest complexation. α-CD has little effect on the emission, while β-CD and γ-CD lead to enhanced and reduced emissions of 3HF-EO, respectively. The 1H NMR and 2D NOESY NMR spectra indicate that α-CD barely had any interaction with 3HF-EO, while β-CD and γ-CD formed complexes with one and two 3HF-EO molecules, respectively. These results provide a sound explanation for the modulated fluorescence intensity.
Collapse
Affiliation(s)
- Dahua Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | |
Collapse
|
29
|
Two 3-hydroxyflavone derivatives as two-photon fluorescence turn-on chemosensors for cysteine and homocysteine in living cells. Talanta 2018; 181:118-124. [DOI: 10.1016/j.talanta.2017.12.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 01/06/2023]
|
30
|
Mukherjee P, Das A, Faizi MSH, Sen P. Solvent Relaxation Accompanied Ultrafast Excited State Proton Transfer Dynamics Revealed in a Salicylideneaniline Derivative. ChemistrySelect 2018. [DOI: 10.1002/slct.201800380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Puspal Mukherjee
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur - 208 016 India
| | - Aritra Das
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur - 208 016 India
| | - Md. Serajul Haque Faizi
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur - 208 016 India
- Present address: Department of Chemistry, Langat Singh College; B. R. A. Bihar University, Muzaffarpur; Bihar - 842001 India
| | - Pratik Sen
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur - 208 016 India
| |
Collapse
|
31
|
Furukawa K, Yamamoto N, Hino K, Sekiya H. Excited-state intramolecular proton transfer and conformational relaxation in 4'-N,N-dimethylamino-3-hydroxyflavone doped in acetonitrile crystals. Phys Chem Chem Phys 2018; 18:28564-28575. [PMID: 27711473 DOI: 10.1039/c6cp04322d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of intermolecular interactions on excited-state intramolecular proton transfer (ESIPT) in 4'-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring its temperature dependence of steady-state fluorescence excitation and fluorescence spectra and picosecond time-resolved spectra. The relative intensity of emission from the excited state of the normal form (N*) to that from the excited state of the tautomer form (T*) and spectral features changed markedly with temperature. Unusual changes in the spectral shift and spectral features were observed in the fluorescence spectra measured between 200 and 218 K, indicating that a solid-solid phase transition of DMHF-doped acetonitrile crystals occurred. Time-resolved fluorescence spectra suggested conformational relaxation of the N* state competed with ESIPT after photoexcitation and the ESIPT rate increased with temperature in the low-temperature phase of acetonitrile. However, the intermolecular interaction of N* with acetonitrile in the high-temperature phase markedly stabilized the potential minimum of the fluorescent N* state and slowed the ESIPT. This stabilization can be explained by reorganization of acetonitrile originating from the strong electric dipole-dipole interaction between DMHF and acetonitrile molecules.
Collapse
Affiliation(s)
- Kazuki Furukawa
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 813-0395, Japan.
| | - Norifumi Yamamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Tsudanuma 2-17-1, Narashino, Chiba 275-0016, Japan
| | - Kazuyuki Hino
- Department of Chemistry, Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448-8542, Japan
| | - Hiroshi Sekiya
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 813-0395, Japan.
| |
Collapse
|
32
|
Sedgwick AC, Wu L, Han HH, Bull SD, He XP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev 2018; 47:8842-8880. [DOI: 10.1039/c8cs00185e] [Citation(s) in RCA: 690] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review recent advances in the design and application of excited-state intramolecular proton-transfer (ESIPT) based fluorescent probes. These sensors and imaging agents (probes) are important in biology, physiology, pharmacology, and environmental science.
Collapse
Affiliation(s)
- Adam C. Sedgwick
- Department of Chemistry
- University of Bath
- Bath
- UK
- Department of Chemistry
| | - Luling Wu
- Department of Chemistry
- University of Bath
- Bath
- UK
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | | | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Tony D. James
- Department of Chemistry
- University of Bath
- Bath
- UK
- Department of Materials and Life Sciences
| | | | - Ben Zhong Tang
- Department of Chemistry
- The Hong Kong University of Science & Technology (HKUST)
- Clear Water Bay
- Kowloon
- China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Juyoung Yoon
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
| |
Collapse
|
33
|
Kothavale S, Erande Y, Sekar N. Triphenylamine-Based Bis- and Tris-ESIPT Compounds and Their Boron Complexes: Synthesis, Photophysical Properties and DFT Study of ICT and ESIPT Emissions. ChemistrySelect 2017. [DOI: 10.1002/slct.201700468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shantaram Kothavale
- Department of Dyestuff Technology; Institute of Chemical Technology; Matunga, Mumbai India
| | - Yogesh Erande
- Department of Dyestuff Technology; Institute of Chemical Technology; Matunga, Mumbai India
| | - Nagaiyan Sekar
- Department of Dyestuff Technology; Institute of Chemical Technology; Matunga, Mumbai India
| |
Collapse
|
34
|
Antioxidant flavone analog functionalized fluorescent silica nanoparticles: Synthesis and exploration of their possible use as biomolecule sensor. Colloids Surf B Biointerfaces 2017; 157:286-296. [PMID: 28601757 DOI: 10.1016/j.colsurfb.2017.05.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/23/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022]
Abstract
For the first time, a synthetic fluorescent antioxidant flavone analog was successfully anchored onto the surface of the APTES-modified mesoporous silica nanoparticles (NPs) through sulfonamide linkage. The surface chemistry and morphology of the flavone modified fluorescent silica (FMFS) NPs were studied in detail. The flavone moiety when attached onto the FMFS NP surface, imparted its characteristic fluorescence and antioxidant activities to these NPs. Moreover, the NPs are highly biocompatible as evidenced from their cytotoxicity assay on normal lung cell (L132). The fluorescence activity of these biocompatible NPs was further utilized to study their interaction with a biomolecule, BSA (Bovine Serum Albumin). It was interesting to note that the fluorescence behavior of FMFS NPs completely changed on their binding with BSA. On the other hand, the intrinsic fluorescence activity of BSA was also significantly modified due to its interaction with FMFS NPs. Thus, the sensing and detection of biomolecules like BSA in presence of FMFS NPs can be accomplished by monitoring changes in the fluorescence behavior of either FMFS NPs or BSA. Furthermore, these FMFS NPs retained their intrinsic fluorescence behavior in the cellular medium which opens up their possible use as biocompatible cell imaging agents in future.
Collapse
|
35
|
Szalai A, Giordano L, Sánchez VM, Atvars TDZ, Faleiros M, Jares-Erijman E, Aramendía PF. Temperature dependent spectroscopic and excited state dynamics of 3-hydroxychromones with electron donor and acceptor substituents. Methods Appl Fluoresc 2017; 5:024011. [PMID: 28504972 DOI: 10.1088/2050-6120/aa6ec0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have studied the photophysical and photochemical behavior of three compounds derived from 3-hydroxychromone (3-HC), capable of undergoing excited state proton transfer (ESIPT). The compounds have two substituents, located in positions 2 and 7, one on each ring of the 3-HC heterocycle. The substituent pattern shows different electron donating and acceptor features. The compounds were studied by absorption and emission spectroscopy, steady state anisotropy, and time resolved emission spectroscopy (TRES) as a function of temperature. Results were interpreted using time dependent density functional theory calculations. Compared to reference compounds of 3-HC substituted only in the 2 position, the compounds show similar absorption and emission spectra, shifted 20-30 nm to higher wavelengths due to extended conjugation. TRES shows the existence of ESIPT in the thermodynamic equilibrium regime. This process is endothermic in all three compounds. The different behavior compared to monosubstituted 3-HC is attributed to the extended conjugation and to the electron donor acceptor character of the substituents, which has a more pronounced effect when the electron acceptor is located in position 2.
Collapse
Affiliation(s)
- Alan Szalai
- Centro de Investigaciones en Bionanociencias 'Elizabeth Jares-Erijman' CIBION. CONICET. Godoy Cruz 2390. 1425 Ciudad de Buenos Aires. Argentina. Departamento de Química Inorgánica, Analítica y Química Física. FCEN. UBA. Pabellón 2. Ciudad Universitaria. 1428 Ciudad de Buenos Aires. Argentina
| | | | | | | | | | | | | |
Collapse
|
36
|
Szakács Z, Kállay M, Kubinyi M. Theoretical study on the photooxygenation and photorearrangement reactions of 3-hydroxyflavone. RSC Adv 2017. [DOI: 10.1039/c7ra04590e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanisms of three photodegradation reactions of 3-hydroxyflavone – its photosensitized oxygenation, photooxygenation with 3O2 and photorearrangement into an indanedione derivative – have been investigated by computing the free energy profiles.
Collapse
Affiliation(s)
- Zoltán Szakács
- Department of Physical Chemistry and Materials Science
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group
- Department of Physical Chemistry and Materials Science
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
| | - Miklós Kubinyi
- Department of Physical Chemistry and Materials Science
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
- Institute of Materials and Environmental Chemistry
| |
Collapse
|
37
|
Ghosh D, Ahamed G, Batuta S, Begum NA, Mandal D. 3′,4′-methylenedioxy-3-hydroxyflavone: switchover from reversible to irreversible ESIPT along the n-alcohol series. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
New AB2 type two-photon absorption dyes for well-separated dual-emission: molecular preorganization based approach to photophysical properties. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Weber’s Red-Edge Effect that Changed the Paradigm in Photophysics and Photochemistry. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/4243_2016_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
40
|
Padalkar VS, Seki S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem Soc Rev 2016; 45:169-202. [PMID: 26506465 DOI: 10.1039/c5cs00543d] [Citation(s) in RCA: 585] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Solid state emitters based on excited state intramolecular proton transfer (ESIPT) have been attracting considerable interest since the past few years in the field of optoelectronic devices because of their desirable unique photophysical properties. The photophysical properties of the solid state ESIPT fluorophores determine their possible applicability in functional materials. Less fluorescence quantum efficiencies and short fluorescence lifetime in the solid state are the shortcomings of the existing ESIPT solid state emitters. Designing of ESIPT chromophores with high fluorescence quantum efficiencies and a long fluorescence lifetime in the solid state is a challenging issue because of the unclear mechanism of the solid state emitters in the excited state. Reported design strategies, detailed photophysical properties, and their applications will help in assisting researchers to overcome existing challenges in designing novel solid state ESIPT fluorophores for promising applications. This review highlights recently developed solid state ESIPT emitters with focus on molecular design strategies and their photophysical properties, reported in the last five years.
Collapse
Affiliation(s)
- Vikas S Padalkar
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
41
|
Szakács Z, Bojtár M, Drahos L, Hessz D, Kállay M, Vidóczy T, Bitter I, Kubinyi M. The kinetics and mechanism of photooxygenation of 4'-diethylamino-3-hydroxyflavone. Photochem Photobiol Sci 2016; 15:219-27. [PMID: 26738442 DOI: 10.1039/c5pp00358j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photolysis reactions of 4'-diethylamino-3-hydroxyflavone (D), a versatile fluorescent probe showing excited-state intramolecular proton transfer (ESIPT), and the magnesium chelate of D (MgD(2+)) have been studied in acetonitrile solution. Upon UV irradiation both species were oxidized into O-4-diethylaminobenzoyl salicylic acid, differently from the photoreaction of the parent compound 3-hydroxyflavone (3HF) which was described to undergo rearrangement to 3-hydroxy-3-phenyl-indan-1,2-dione. The photooxygenation of the Mg(2+) complex was found to be significantly faster than the reaction of the pure dye. As the kinetic analysis of the absorption spectra of samples under irradiation showed, the rate coefficients for the oxygenations of the excited state dye and complex have close values, kox(D*) = 2.4 × 10(7) min(-1), kox(MgD(2+)*) = 3.9 × 10(7) min(-1); the difference arises from the higher photooxygenation quantum yield of the complex, Φ(MgD(2+)) = 2.3 × 10(-3), than the respective value for the pure dye, Φ(D) = 1.5 × 10(-4). The potential energy surface of the photooxygenation of D was calculated assuming a reaction path in which the phototautomer formed from Dvia ESIPT, reacts in its triplet state with triplet molecular oxygen O2, a mechanism similar to that suggested for the photoreaction of the parent 3HF. The moderate values for the transition state energies confirmed the plausibility of the hypothetical mechanism.
Collapse
Affiliation(s)
- Zoltán Szakács
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ghosh D, Ahamed G, Batuta S, Begum NA, Mandal D. Effect of an Electron-Donating Substituent at the 3′,4′-position of 3-Hydroxyflavone: Photophysics in Bulk Solvents. J Phys Chem A 2016; 120:44-54. [DOI: 10.1021/acs.jpca.5b09681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deborin Ghosh
- Department
of Chemistry, University College of Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Giasuddin Ahamed
- Department
of Chemistry, University College of Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Shaikh Batuta
- Bio-Organic
Chemistry Lab, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235, India
| | - Naznin Ara Begum
- Bio-Organic
Chemistry Lab, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235, India
| | - Debabrata Mandal
- Department
of Chemistry, University College of Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| |
Collapse
|
43
|
Wu Q, Wang Z, Li J, Qiu S, Cao D, Liu Z, Guan R. 3-Hydroxyflavone derivatives synthesized by a new simple method as chemosensors for cyanide anions. RSC Adv 2016. [DOI: 10.1039/c6ra11415f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two 3-hydroxyflavone derivatives as chemosensors for cyanide were synthesized by one step simple condensation, cyclization and subsequent oxidation reaction catalyzed by pyrrolidine, which shows great convenience compared with traditional method.
Collapse
Affiliation(s)
- Qianqian Wu
- School of Material Science and Engineering
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- China
| | - Zian Wang
- School of Material Science and Engineering
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- China
| | - Jiale Li
- School of Material Science and Engineering
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- China
| | - Shuang Qiu
- School of Material Science and Engineering
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- China
| | - Duxia Cao
- School of Material Science and Engineering
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- China
| | - Ruifang Guan
- School of Material Science and Engineering
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
44
|
Furukawa K, Yamamoto N, Hino K, Sekiya H. Temperature dependent fluorescence spectra arise from change in excited-state intramolecular proton transfer potential of 4′-N,N-dimethylamino-3-hydroxyflavone-doped acetonitrile crystals. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Ghosh D, Batuta S, Begum NA, Mandal D. Unusually slow intramolecular proton transfer dynamics of 4′-N,N-dimethylamino-3-hydroxyflavone in high n-alcohols: involvement of solvent relaxation. Photochem Photobiol Sci 2016; 15:266-77. [DOI: 10.1039/c5pp00377f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The S1 energy surface of DMA3HF as a function of solvation and ESIPT coordinates, viewed down the energy axis as a 2-dimensional projection.
Collapse
Affiliation(s)
- Deborin Ghosh
- Department of Chemistry
- University College of Science & Technology
- University of Calcutta
- Kolkata 700 009
- India
| | - Shaikh Batuta
- Bio-Organic Chemistry Lab
- Department of Chemistry
- Visva-Bharati University
- Santiniketan 731 235
- India
| | - Naznin Ara Begum
- Bio-Organic Chemistry Lab
- Department of Chemistry
- Visva-Bharati University
- Santiniketan 731 235
- India
| | - Debabrata Mandal
- Department of Chemistry
- University College of Science & Technology
- University of Calcutta
- Kolkata 700 009
- India
| |
Collapse
|