1
|
Klonecka A, Sławek J, Gazdowicz G, Maximenko A, Sławek A, Piszak M, Lichtenberg H, Kozak M. XANES reference library of sulphur-containing compounds for biological research: a status report from the ASTRA beamline at the SOLARIS National Synchrotron Radiation Centre. RSC Adv 2025; 15:13513-13524. [PMID: 40297008 PMCID: PMC12035811 DOI: 10.1039/d5ra00682a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Sulphur is present in a vast multitude of biological compounds, and X-ray absorption spectroscopy (XAS) is a powerful and well-established characterization technique to study the local atomic environment of this chemical element in such systems in detail, with a high potential for advancing knowledge in medicine, biotechnology and environmental research. For this project, X-ray absorption near edge structure (XANES) spectroscopy at the sulphur K-absorption edge was used to investigate sulphur-containing compounds of biological interest at the ASTRA beamline (SOLARIS National Synchrotron Radiation Centre, Kraków, Poland). XANES provides valuable insights into the bonding environment of sulphur and thereby contributes to a deeper understanding of the structural characteristics and functional roles of sulphur in biological systems. The ASTRA beamline, specifically optimized for XAS in the tender energy range, offers ideal conditions for further research in this field, enabling detailed analysis of the composition and changes in sulphur containing compounds.
Collapse
Affiliation(s)
- Agnieszka Klonecka
- SOLARIS National Synchrotron Radiation Centre Kraków Poland
- The Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University Kraków Poland
- Doctoral School of Exact and Natural Science, Jagiellonian University Kraków Poland
| | - Joanna Sławek
- SOLARIS National Synchrotron Radiation Centre Kraków Poland
| | | | | | - Andrzej Sławek
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology Kraków Poland
| | - Marcel Piszak
- SOLARIS National Synchrotron Radiation Centre Kraków Poland
| | | | - Maciej Kozak
- SOLARIS National Synchrotron Radiation Centre Kraków Poland
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University Poznań Poland
| |
Collapse
|
2
|
De Santis E, Alleva S, Minicozzi V, Morante S, Stellato F. Probing the Dynamic Landscape: From Static to Time-Resolved X-Ray Absorption Spectroscopy to Investigate Copper Redox Chemistry in Neurodegenerative Disorders. Chempluschem 2024; 89:e202300712. [PMID: 38526934 DOI: 10.1002/cplu.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Copper (Cu), with its ability to exist in various oxidation states, notably Cu(I) and Cu(II), plays a crucial role in diverse biological redox reactions. This includes its involvement in pathways associated with oxidative stress in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Transmissible Spongiform Encephalopathies. This paper offers an overview of X-ray Absorption Spectroscopy (XAS) studies designed to elucidate the interactions between Cu ions and proteins or peptides associated with these neurodegenerative diseases. The emphasis lies on XAS specificity, revealing the local coordination environment, and on its sensitivity to Cu oxidation states. Furthermore, the paper focuses on XAS applications targeting the characterization of intermediate reaction states and explores the opportunities arising from recent advancements in time-resolved XAS at ultrabright synchrotron and Free Electron Laser radiation sources.
Collapse
Affiliation(s)
- Emiliano De Santis
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23, Uppsala, Sweden
| | - Stefania Alleva
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| | - Velia Minicozzi
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| | - Silvia Morante
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| | - Francesco Stellato
- Department of Physics, University of Rome, Tor Vergata, Rome, 00133, Italy
- INFN, Rome, Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
3
|
Sunda AP, Sharma AK. Molecular Insights into Cu/Zn Metal Response to the Amyloid β-Peptide (1-42). ACS PHYSICAL CHEMISTRY AU 2024; 4:57-66. [PMID: 38283784 PMCID: PMC10811771 DOI: 10.1021/acsphyschemau.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 01/30/2024]
Abstract
Aβ1-40 peptide and Aβ1-42 peptide are the building units of beta-amyloid plaques present in Alzheimer's disease (AD)-affected brain. The binding affinity of various divalent metal ions such as Cu and Zn present in AD-affected brain with different amino acids available in Aβ-peptide became the focus to explore their role in soluble neurotoxic oligomer formation. Cu2+ metal ions are known to enhance the neurotoxicity of the Aβ1-42 peptide by catalyzing the formation of soluble neurotoxic oligomers. The competitive preference of both Cu2+ and Zn2+ simultaneously to interact with the Aβ-peptide is unknown. The divalent Cu and Zn ions were inserted in explicit aqueous Aβ1-42 peptide configurations to get insights into the binding competence of these metal ions with peptides using classical molecular dynamics (MD) simulations. The metal-ion interactions reveal that competitive binding preferences of various peptide sites become metal-ion-specific and differ significantly. For Cu2+, interactions are found to be more significant with respect to those of Asp-7, His-6, Glu-11, and His-14. Asp-1, Glu-3, Asp-7, His-6, Glu-11, and His-13 amino acid residues show higher affinity toward Zn2+ ions. MD simulations show notable variation in the solvent-accessible surface area in the hydrophobic region of the peptide. Infinitesimal mobility was obtained for Zn2+ compared to Cu2+ in an aqueous solution and Cu2+ diffusivity deviated significantly at different time scales, proving its labile features in aqueous Aβ1-42 peptides.
Collapse
Affiliation(s)
- Anurag Prakash Sunda
- Department
of Chemistry, J. C. Bose University of Science
and Technology, YMCA, Faridabad 121006, India
| | - Anuj Kumar Sharma
- Department
of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| |
Collapse
|
4
|
Falcone E, Nobili G, Okafor M, Proux O, Rossi G, Morante S, Faller P, Stellato F. Chasing the Elusive "In-Between" State of the Copper-Amyloid β Complex by X-ray Absorption through Partial Thermal Relaxation after Photoreduction. Angew Chem Int Ed Engl 2023; 62:e202217791. [PMID: 36869617 DOI: 10.1002/anie.202217791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023]
Abstract
The redox activity of Cu ions bound to the amyloid-β (Aβ) peptide is implicated as a source of oxidative stress in the context of Alzheimer's disease. In order to explain the efficient redox cycling between CuII -Aβ (distorted square-pyramidal) and CuI -Aβ (digonal) resting states, the existence of a low-populated "in-between" state, prone to bind Cu in both oxidation states, has been postulated. Here, we exploited the partial X-ray induced photoreduction at 10 K, followed by a thermal relaxation at 200 K, to trap and characterize by X-ray Absorption Spectroscopy (XAS) a partially reduced Cu-Aβ1-16 species different from the resting states. Remarkably, the XAS spectrum is well-fitted by a previously proposed model of the "in-between" state, hence providing the first direct spectroscopic characterization of an intermediate state. The present approach could be used to explore and identify the catalytic intermediates of other relevant metal complexes.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie (UMR 7177), University of Strasbourg, CNRS, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Germano Nobili
- Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
| | - Michael Okafor
- Institut de Chimie (UMR 7177), University of Strasbourg, CNRS, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Olivier Proux
- Observatoire des Sciences de l'Univers de Grenoble, UMS 832 CNRS-Université Grenoble Alpes, 38041, Grenoble, France
| | - Giancarlo Rossi
- Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
- Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89a, 00184, Roma, Italy
| | - Silvia Morante
- Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg, CNRS, 4 Rue Blaise Pascal, 67081, Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231, Paris, France
| | - Francesco Stellato
- Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma, Italy
| |
Collapse
|
5
|
Morante S, Botticelli S, Chiaraluce R, Consalvi V, La Penna G, Novak L, Pasquo A, Petrosino M, Proux O, Rossi G, Salina G, Stellato F. Metal Ion Binding in Wild-Type and Mutated Frataxin: A Stability Study. Front Mol Biosci 2022; 9:878017. [PMID: 35712353 PMCID: PMC9195147 DOI: 10.3389/fmolb.2022.878017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
This work studies the stability of wild-type frataxin and some of its variants found in cancer tissues upon Co2+ binding. Although the physiologically involved metal ion in the frataxin enzymatic activity is Fe2+, as it is customarily done, Co2+ is most often used in experiments because Fe2+ is extremely unstable owing to the fast oxidation reaction Fe2+ → Fe3+. Protein stability is monitored following the conformational changes induced by Co2+ binding as measured by circular dichroism, fluorescence spectroscopy, and melting temperature measurements. The stability ranking among the wild-type frataxin and its variants obtained in this way is confirmed by a detailed comparative analysis of the XAS spectra of the metal-protein complex at the Co K-edge. In particular, a fit to the EXAFS region of the spectrum allows positively identifying the frataxin acidic ridge as the most likely location of the metal-binding sites. Furthermore, we can explain the surprising feature emerging from a detailed analysis of the XANES region of the spectrum, showing that the longer 81-210 frataxin fragment has a smaller propensity for Co2+ binding than the shorter 90-210 one. This fact is explained by the peculiar role of the N-terminal disordered tail in modulating the protein ability to interact with the metal.
Collapse
Affiliation(s)
- S. Morante
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
- *Correspondence: S. Morante ,
| | - S. Botticelli
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
| | - R. Chiaraluce
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universitá di Roma, Rome, Italy
| | - V. Consalvi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universitá di Roma, Rome, Italy
| | - G. La Penna
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
- CNR—Istituto di Chimica dei Composti Organometallici, Firenze, Italy
| | - L. Novak
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universitá di Roma, Rome, Italy
| | - A. Pasquo
- ENEA CR Frascati, Diagnostics and Metrology Laboratory FSN-TECFIS-DIM, Frascati, Italy
| | - M. Petrosino
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - O. Proux
- Observatoire des Sciences de L’Univers de Grenoble, UAR 832 CNRS, Université Grenoble Alpes, Grenoble, France
| | - G. Rossi
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma, Italy
| | - G. Salina
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
| | - F. Stellato
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Zhao J, Dong T, Yu P, Wang J. Conformation and Metal Cation Binding of Zwitterionic Alanine Tripeptide in Saline Solutions by Infrared Vibrational Spectroscopy and Molecular Dynamics Simulations. J Phys Chem B 2021; 126:161-173. [PMID: 34968072 DOI: 10.1021/acs.jpcb.1c10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, linear infrared (IR) spectroscopy and molecular dynamics (MD) simulations were used to examine the interaction of different metal cations (Na+, Ca2+, Mg2+, and Zn2+) with backbone (amide C═O) and C-terminal carboxylate (COO-) groups in zwitterionic alanine tripeptide (Ala3) in aqueous solutions with varying saline concentrations. Circular dichroism spectra and MD results suggest that Ala3 is predominantly in polyproline-II (PPII) conformation, whose amide-I and asymmetric carboxylate stretching IR vibration signatures are also supported by quantum-chemistry calculations. The zwitterionic form of Ala3 separates the two amide-I modes in frequency, which are weakly coupled modes, as revealed by two-dimensional IR measurement, and can be used to probe backbone-cation interactions at different scenarios (near charged or neutral chemical groups respectively). Cation concentration-dependent IR frequency red shifts in the amide-I mode are seen for both amide-I modes, whereas blue shifts are also seen in the amide-I mode far from the NH3+ group. The observed spectral changes are discussed from the perspective of the salting-in and salting-out abilities of the cations. In addition, all the metal cations studied here (except Zn2+) can specifically coordinate to the COO- group in bidentate and pseudo-bridging forms simultaneously. For Zn2+, only the pseudo-bridging form exists. Our results shed light on the macroscopic protein salting-in and salting-out phenomena from the perspective of key chemical bonds in peptides.
Collapse
Affiliation(s)
- Juan Zhao
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tiantian Dong
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Boopathi S, Poma AB, Garduño-Juárez R. An Overview of Several Inhibitors for Alzheimer's Disease: Characterization and Failure. Int J Mol Sci 2021; 22:10798. [PMID: 34639140 PMCID: PMC8509255 DOI: 10.3390/ijms221910798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/04/2023] Open
Abstract
Amyloid beta (Aβ) oligomers are the most neurotoxic aggregates causing neuronal death and cognitive damage. A detailed elucidation of the aggregation pathways from oligomers to fibril formation is crucial to develop therapeutic strategies for Alzheimer's disease (AD). Although experimental techniques rely on the measure of time- and space-average properties, they face severe difficulties in the investigation of Aβ peptide aggregation due to their intrinsically disorder character. Computer simulation is a tool that allows tracing the molecular motion of molecules; hence it complements Aβ experiments, as it allows to explore the binding mechanism between metal ions and Aβ oligomers close to the cellular membrane at the atomic resolution. In this context, integrated studies of experiments and computer simulations can assist in mapping the complete pathways of aggregation and toxicity of Aβ peptides. Aβ oligomers are disordered proteins, and due to a rapid exploration of their intrinsic conformational space in real-time, they are challenging therapeutic targets. Therefore, no good drug candidate could have been identified for clinical use. Our previous investigations identified two small molecules, M30 (2-Octahydroisoquinolin-2(1H)-ylethanamine) and Gabapentin, capable of Aβ binding and inhibiting molecular aggregation, synaptotoxicity, intracellular calcium signaling, cellular toxicity and memory losses induced by Aβ. Thus, we recommend these molecules as novel candidates to assist anti-AD drug discovery in the near future. This review discusses the most recent research investigations about the Aβ dynamics in water, close contact with cell membranes, and several therapeutic strategies to remove plaque formation.
Collapse
Affiliation(s)
- Subramanian Boopathi
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Adolfo B. Poma
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research Polish Academy of Science, Pawińskiego 5B, 02-106 Warsaw, Poland
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| |
Collapse
|
8
|
Boopathi S, Dinh Quoc Huy P, Gonzalez W, Theodorakis PE, Li MS. Zinc binding promotes greater hydrophobicity inAlzheimer's Aβ42peptide than copper binding: Molecular dynamics and solvation thermodynamics studies. Proteins 2020; 88:1285-1302. [DOI: 10.1002/prot.25901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Subramanian Boopathi
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de IngenieríaUniversidad de Talca Talca Chile
| | | | - Wendy Gonzalez
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de IngenieríaUniversidad de Talca Talca Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD)Universidad de Talca Talca Chile
| | | | - Mai Suan Li
- Institute of PhysicsPolish Academy of Sciences Warsaw Poland
- Institute for Computational Science and Technology, Quang Trung Software City Tan Chanh Hiep Ward Ho Chi Minh City Vietnam
| |
Collapse
|
9
|
Abstract
A proposal for building a Free Electron Laser, EuPRAXIA@SPARC_LAB, at the Laboratori Nazionali di Frascati, is at present under consideration. This FEL facility will provide a unique combination of a high brightness GeV-range electron beam generated in a X-band RF linac, a 0.5 PW-class laser system and the first FEL source driven by a plasma accelerator. The FEL will produce ultra-bright pulses, with up to 10 12 photons/pulse, femtosecond timescale and wavelength down to 3 nm, which lies in the so called “water window”. The experimental activity will be focused on the realization of a plasma driven short wavelength FEL able to provide high-quality photons for a user beamline. In this paper, we describe the main classes of experiments that will be performed at the facility, including coherent diffraction imaging, soft X-ray absorption spectroscopy, Raman spectroscopy, Resonant Inelastic X-ray Scattering and photofragmentation measurements. These techniques will allow studying a variety of samples, both biological and inorganic, providing information about their structure and dynamical behavior. In this context, the possibility of inducing changes in samples via pump pulses leading to the stimulation of chemical reactions or the generation of coherent excitations would tremendously benefit from pulses in the soft X-ray region. High power synchronized optical lasers and a TeraHertz radiation source will indeed be made available for THz and pump–probe experiments and a split-and-delay station will allow performing XUV-XUV pump–probe experiments.
Collapse
|
10
|
X-Ray Absorption Spectroscopy Measurements of Cu-ProIAPP Complexes at Physiological Concentrations. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The amyloidogenic islet amyloid polypeptide (IAPP) and the associated pro-peptide ProIAPP1–48 are involved in cell death in type 2 diabetes mellitus. It has been observed that interactions of this peptide with metal ions have an impact on the cytotoxicity of the peptides as well as on their deposition in the form of amyloid fibrils. In particular, Cu(II) seems to inhibit amyloid fibril formation, thus suggesting that Cu homeostasis imbalance may be involved in the pathogenesis of type 2 diabetes mellitus. We performed X-ray Absorption Spectroscopy (XAS) measurements of Cu(II)-ProIAPP complexes under near-physiological (10 μM), equimolar concentrations of Cu(II) and peptide. Such low concentrations were made accessible to XAS measurements owing to the use of the High Energy Resolved Fluorescence Detection XAS facility recently installed at the ESRF beamline BM16 (FAME-UHD). Our preliminary data show that XAS measurements at micromolar concentrations are feasible and confirm that ProIAPP1–48-Cu(II) binding at near-physiological conditions can be detected.
Collapse
|
11
|
Stellato F, Chiaraluce R, Consalvi V, De Santis E, La Penna G, Proux O, Rossi G, Morante S. Dealing with Cu reduction in X-ray absorption spectroscopy experiments. Metallomics 2019; 11:1401-1410. [DOI: 10.1039/c9mt00110g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prove in the exemplary case of the Cu(ii) amyloid-β peptide complex that, at cryogenic temperatures, the time needed for collecting a good quality spectrum is significantly shorter than the time after which structural damage becomes appreciable.
Collapse
Affiliation(s)
| | - Roberta Chiaraluce
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” Sapienza Universitá di Roma
- 00185 Roma
- Italy
| | - Valerio Consalvi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” Sapienza Universitá di Roma
- 00185 Roma
- Italy
| | | | - Giovanni La Penna
- INFN
- Sezione di Roma Tor Vergata
- 00133 Roma
- Italy
- CNR – Institute for Chemistry of Organometallic Compounds
| | - Olivier Proux
- Observatoire des Sciences de l'Univers de Grenoble
- 38400 Saint Martin d'Hères (Grenoble)
- France
| | - Giancarlo Rossi
- Dipartimento di Fisica
- Universitá di Roma Tor Vergata
- 00133 Roma
- Italy
- INFN
| | - Silvia Morante
- Dipartimento di Fisica
- Universitá di Roma Tor Vergata
- 00133 Roma
- Italy
- INFN
| |
Collapse
|
12
|
Aliès B, Borghesani V, Noël S, Sayen S, Guillon E, Testemale D, Faller P, Hureau C. Mutations of Histidine 13 to Arginine and Arginine 5 to Glycine Are Responsible for Different Coordination Sites of Zinc(II) to Human and Murine Peptides. Chemistry 2018; 24:14233-14241. [PMID: 29978925 DOI: 10.1002/chem.201802759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 01/21/2023]
Abstract
Because mice and rats do not naturally develop Alzheimer's disease, genetically modified animals are required to study this pathology. This striking difference in terms of disease onset could be due to three alterations in the murine sequence (R5G, Y10F and H13R) of the amyloid-β peptide with respect to the human counterpart. Whether the metal-ion binding properties of the murine peptide are at the origin of such different amyloidogenicity of the two peptides is still an open question. Herein, the main zinc binding site to the murine amyloid-β at physiological pH has been determined through the combination of several spectroscopic and analytical methods applied to a series of six peptides with one or two of the key mutations. These results have been compared with the zinc binding site encountered in the human peptide. A coordination mechanism that demonstrates the importance of the H13R and R5G mutations in the different zinc environments present in the murine and human peptides is proposed. The nature of the minor zinc species present at physiological pH is also suggested for both peptides. Finally, the biological relevance and fallouts of the differences determined in zinc binding to human versus murine amyloid-β are also discussed.
Collapse
Affiliation(s)
- Bruno Aliès
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.,Current address: Université de Bordeaux, ChemBioPharm INSERM U1212 CNRS UMR 5320, 33076, Bordeaux, France
| | | | - Sabrina Noël
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Stephanie Sayen
- Université Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312 CNRS-URCA, Moulin de la Housse, BP 1039, 51687, Reims Cedex 2, France
| | - Emmanuel Guillon
- Université Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312 CNRS-URCA, Moulin de la Housse, BP 1039, 51687, Reims Cedex 2, France
| | - Denis Testemale
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000, Grenoble, France.,BM30B/FAME, ESRF, The European Synchrotron, 71 avenue des Martyrs, 38000, Grenoble, France
| | - Peter Faller
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.,Current address: Institut de Chimie, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, Institut Le Bel, 67008, Strasbourg, France
| | | |
Collapse
|
13
|
Atrián-Blasco E, Conte-Daban A, Hureau C. Mutual interference of Cu and Zn ions in Alzheimer's disease: perspectives at the molecular level. Dalton Trans 2017; 46:12750-12759. [PMID: 28937157 PMCID: PMC5656098 DOI: 10.1039/c7dt01344b] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022]
Abstract
While metal ions such as copper and zinc are essential in biology, they are also linked to several amyloid-related diseases, including Alzheimer's disease (AD). Zinc and copper can indeed modify the aggregation pathways of the amyloid-β (Aβ) peptide, the key component encountered in AD. In addition, the redox active copper ions do produce Reactive Oxygen Species (ROS) when bound to the Aβ peptide. While Cu(i) or Cu(ii) or Zn(ii) coordination to the Aβ has been extensively studied in the last ten years, characterization of hetero-bimetallic Aβ complexes is still scarce. This is also true for the metal induced Aβ aggregation and ROS production, for which studies on the mutual influence of the copper and zinc ions are currently appearing. Last but not least, zinc can strongly interfere in therapeutic approaches relying on copper detoxification. This will be exemplified with a biological lead, namely metallothioneins, and with synthetic ligands.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| | - Amandine Conte-Daban
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| | - Christelle Hureau
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| |
Collapse
|
14
|
Stellato F, Fusco Z, Chiaraluce R, Consalvi V, Dinarelli S, Placidi E, Petrosino M, Rossi G, Minicozzi V, Morante S. The effect of β-sheet breaker peptides on metal associated Amyloid-β peptide aggregation process. Biophys Chem 2017; 229:110-114. [DOI: 10.1016/j.bpc.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 11/30/2022]
|
15
|
Alies B, Conte-Daban A, Sayen S, Collin F, Kieffer I, Guillon E, Faller P, Hureau C. Zinc(II) Binding Site to the Amyloid-β Peptide: Insights from Spectroscopic Studies with a Wide Series of Modified Peptides. Inorg Chem 2016; 55:10499-10509. [PMID: 27665863 PMCID: PMC5069684 DOI: 10.1021/acs.inorgchem.6b01733] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Zn(II) ion has been linked to Alzheimer's disease (AD) due to its ability to modulate the aggregating properties of the amyloid-β (Aβ) peptide, where Aβ aggregation is a central event in the etiology of the disease. Delineating Zn(II) binding properties to Aβ is thus a prerequisite to better grasp its potential role in AD. Because of (i) the flexibility of the Aβ peptide, (ii) the multiplicity of anchoring sites, and (iii) the silent nature of the Zn(II) ion in most classical spectroscopies, this is a difficult task. To overcome these difficulties, we have investigated the impact of peptide alterations (mutations, N-terminal acetylation) on the Zn(Aβ) X-ray absorption spectroscopy fingerprint and on the Zn(II)-induced modifications of the Aβ peptides' NMR signatures. We propose a tetrahedrally bound Zn(II) ion, in which the coordination sphere is made by two His residues and two carboxylate side chains. Equilibria between equivalent ligands for one Zn(II) binding position have also been observed, the predominant site being made by the side chains of His6, His13 or His14, Glu11, and Asp1 or Glu3 or Asp7, with a slight preference for Asp1.
Collapse
Affiliation(s)
- Bruno Alies
- CNRS, LCC (Laboratoire de Chimie de Coordination) , 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France.,Université de Toulouse , UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Amandine Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination) , 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France.,Université de Toulouse , UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Stéphanie Sayen
- Université Reims Champagne Ardenne , Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312 CNRS-URCA, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Fabrice Collin
- CNRS, LCC (Laboratoire de Chimie de Coordination) , 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France.,Université de Toulouse , UPS, INPT, F-31077 Toulouse Cedex 4, France.,Université de Toulouse , UPS, UMR 152 PHARMA-DEV, Université Toulouse 3, and Institut de Recherche pour le Développement (IRD), UMR 152 PHARMA-DEV, F-31062 Toulouse Cedex 09, France
| | - Isabelle Kieffer
- Observatoire des Sciences de l'Univers de Grenoble (OSUG) , CNRS UMS 832, 414 Rue de la Piscine, 38400 Saint Martin d'Hères, France.,BM30B/FAME, ESRF, The European Synchrotron , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Emmanuel Guillon
- Université Reims Champagne Ardenne , Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312 CNRS-URCA, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination) , 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France.,Université de Toulouse , UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination) , 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France.,Université de Toulouse , UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|