1
|
Gelles JD, Chen Y, Luna-Vargas MPA, Follis AV, Bayiokos SG, Mohammed JN, Sebastian TM, Al Noman MA, Pham ND, Shi Y, Kriwacki RW, Chipuk JE. A gated hydrophobic funnel within BAX binds long-chain alkenals to potentiate pro-apoptotic function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630122. [PMID: 39763924 PMCID: PMC11703243 DOI: 10.1101/2024.12.23.630122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Mitochondria maintain a biochemical environment that cooperates with BH3-only proteins (e.g., BIM) to potentiate BAX activation, the key event to initiate physiological and pharmacological forms of apoptosis. The sphingosine-1-phosphate metabolite 2-trans-hexadecenal (2t-hexadecenal) is one such component described to support BAX activation, but molecular mechanisms remain largely unknown. Here, we utilize complementary biochemical and biophysical techniques to reveal that 2t-hexadecenal non-covalently interacts with BAX, and cooperates with BIM to stimulate early-activation steps of monomeric BAX. Integrated structural and computational approaches reveal 2t-hexadecenal binds an undefined region - a hydrophobic cavity formed by core-facing residues of α5, α6, and gated by α8 - we now term the "BAX actuating funnel" (BAF). We define alkenal length and α8 mobility as critical determinants for 2t-hexadecenal synergy with BIM and BAX, and demonstrate that proline 168 allosterically regulates BAF function. Collectively, this work imparts detailed molecular insights advancing our fundamental knowledge of BAX regulation and identifies a regulatory region with implications for biological and therapeutic opportunities.
Collapse
Affiliation(s)
- Jesse D. Gelles
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Yiyang Chen
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Mark P. A. Luna-Vargas
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Stella G. Bayiokos
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Jarvier N. Mohammed
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Tara M. Sebastian
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - M. Abdullah Al Noman
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Ngoc Dung Pham
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Yi Shi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, Tennessee 38105, USA
| | - Jerry E. Chipuk
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| |
Collapse
|
3
|
Lan YJ, Yeh PS, Kao TY, Lo YC, Sue SC, Chen YW, Hwang DW, Chiang YW. Anti-apoptotic BCL-2 regulation by changes in dynamics of its long unstructured loop. Commun Biol 2020; 3:668. [PMID: 33184407 PMCID: PMC7665024 DOI: 10.1038/s42003-020-01390-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
BCL-2, a key protein in inhibiting apoptosis, has a 65-residue-long highly flexible loop domain (FLD) located on the opposite side of its ligand-binding groove. In vivo phosphorylation of the FLD enhances the affinity of BCL-2 for pro-apoptotic ligands, and consequently anti-apoptotic activity. However, it remains unknown as to how the faraway, unstructured FLD modulates the affinity. Here we investigate the protein-ligand interactions by fluorescence techniques and monitor protein dynamics by DEER and NMR spectroscopy tools. We show that phosphomimetic mutations on the FLD lead to a reduction in structural flexibility, hence promoting ligand access to the groove. The bound pro-apoptotic ligands can be displaced by the BCL-2-selective inhibitor ABT-199 efficiently, and thus released to trigger apoptosis. We show that changes in structural flexibility on an unstructured loop can activate an allosteric protein that is otherwise structurally inactive.
Collapse
Affiliation(s)
- Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Shan Yeh
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuan-Chao Lo
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Wen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Dennis W Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Turcu DC, Lillehaug JR, Seo HC. SIX3 and SIX6 interact with GEMININ via C-terminal regions. Biochem Biophys Rep 2019; 20:100695. [PMID: 31844685 PMCID: PMC6895700 DOI: 10.1016/j.bbrep.2019.100695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 01/13/2023] Open
Abstract
The histoarchitecture and function of eye and forebrain depend on a well-controlled balance between cell proliferation and differentiation. For example, the binding of the cell cycle regulator GEMININ to CDT1, which is a part of the pre-replication complex, promotes cell differentiation. Homeodomain transcription factors SIX3 and SIX6 also interact with GEMININ of which SIX3-GEMININ interaction promotes cell proliferation, whereas the nature of SIX6-GEMININ interaction has not been studied to date. We investigated SIX3/SIX6 and GEMININ interactions using bimolecular fluorescence complementation, surface plasmon resonance and isothermal titration calorimetry. Interactions between SIX3/SIX6 and GEMININ were detected in mammalian cells in culture. The presence of the C-terminal regions of SIX3 and SIX6 proteins, but not their SIX domains or homeodomains as previously thought, were required for interaction with GEMININ. Interestingly, the disordered C- and N- terminal regions of GEMININ were involved in binding to SIX3/SIX6. The coiled-coil region of GEMININ, which is the known protein-binding domain and also interacts with CDT1, was not involved in GEMININ-SIX3/SIX6 interaction. Using SPR and ITC, SIX3 bound GEMININ with a micromolar affinity and the binding stoichiometry was 1:2 (SIX3 - GEMININ). The present study gives new insights into the binding properties of SIX proteins, especially the role of their variable and disordered C-terminal regions. C-terminal regions of SIX3/SIX6 bind GEMININ. GEMININ coiled-coil region is not involved in SIX3/SIX6 interaction. C- and N-terminal regions of GEMININ bind SIX3/SIX6. SIX3 binds GEMININ with a binding stoichiometry of 1:2.
Collapse
Affiliation(s)
- Diana C Turcu
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Johan R Lillehaug
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Hee-Chan Seo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Gallagher EE, Song JM, Menon A, Mishra LD, Chmiel AF, Garner AL. Consideration of Binding Kinetics in the Design of Stapled Peptide Mimics of the Disordered Proteins Eukaryotic Translation Initiation Factor 4E-Binding Protein 1 and Eukaryotic Translation Initiation Factor 4G. J Med Chem 2019; 62:4967-4978. [PMID: 31033289 PMCID: PMC6679956 DOI: 10.1021/acs.jmedchem.9b00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein disorder plays a crucial role in signal transduction and is key for many cellular processes including transcription, translation, and cell cycle. Within the intrinsically disordered protein interactome, the α-helix is commonly used for binding, which is induced via a disorder-to-order transition. Because the targeting of protein-protein interactions (PPIs) remains an important challenge in medicinal chemistry, efforts have been made to mimic this secondary structure for rational inhibitor design through the use of stapled peptides. Cap-dependent mRNA translation is regulated by two disordered proteins, 4E-BP1 and eIF4G, that inhibit or stimulate the activity of the m7G cap-binding translation initiation factor, eIF4E, respectively. Both use an α-helical motif for eIF4E binding, warranting the investigation of stapled peptide mimics for manipulating eIF4E PPIs. Herein, we describe our efforts toward this goal, resulting in the synthesis of a cell-active stapled peptide for further development in manipulating aberrant cap-dependent translation in human diseases.
Collapse
Affiliation(s)
- Erin E Gallagher
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - James M Song
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , United States
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Lauren D Mishra
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Alyah F Chmiel
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
8
|
Arai M. Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins. Biophys Rev 2018; 10:163-181. [PMID: 29307002 PMCID: PMC5899706 DOI: 10.1007/s12551-017-0346-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we attempt to integrate the mechanisms of coupled folding and binding of IDPs, folding of small and multi-subdomain proteins, folding of multimeric proteins, and ligand binding of globular proteins in terms of conformational selection and induced-fit mechanisms as well as the nucleation–condensation mechanism that is intermediate between them. Accumulating evidence has shown that both the rate of conformational change and apparent rate of binding between interacting elements can determine reaction mechanisms. Coupled folding and binding of IDPs occurs mainly by induced-fit because of the slow folding in the free form, while ligand binding of globular proteins occurs mainly by conformational selection because of rapid conformational change. Protein folding can be regarded as the binding of intramolecular segments accompanied by secondary structure formation. Multi-subdomain proteins fold mainly by the induced-fit (hydrophobic collapse) mechanism, as the connection of interacting segments enhances the binding (compaction) rate. Fewer hydrophobic residues in small proteins reduce the intramolecular binding rate, resulting in the nucleation–condensation mechanism. Thus, the folding and binding of globular proteins and IDPs obey the same general principle, suggesting that the coarse-grained, statistical mechanical model of protein folding is promising for a unified theoretical description of all mechanisms.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|