1
|
Dalal K, McAnany C, Weilert M, McKinney MC, Krueger S, Zeitlinger J. Interpreting regulatory mechanisms of Hippo signaling through a deep learning sequence model. CELL GENOMICS 2025; 5:100821. [PMID: 40174587 PMCID: PMC12008814 DOI: 10.1016/j.xgen.2025.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/23/2024] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Signaling pathway components are well studied, but how they mediate cell-type-specific transcription responses is an unresolved problem. Using the Hippo pathway in mouse trophoblast stem cells as a model, we show that the DNA binding of signaling effectors is driven by cell-type-specific sequence rules that can be learned genome wide by deep learning models. Through model interpretation and experimental validation, we show that motifs for the cell-type-specific transcription factor TFAP2C enhance TEAD4/YAP1 binding in a nucleosome-range and distance-dependent manner, driving synergistic enhancer activation. We also discovered that Tead double motifs are widespread, highly active canonical response elements. Molecular dynamics simulations suggest that TEAD4 binds them cooperatively through surprisingly labile protein-protein interactions that depend on the DNA template. These results show that the response to signaling pathways is encoded in the cis-regulatory sequences and that interpreting the rules reveals insights into the mechanisms by which signaling effectors influence cell-type-specific enhancer activity.
Collapse
Affiliation(s)
- Khyati Dalal
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Charles McAnany
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Perl AL, Pokorny JL, Green KJ. Desmosomes at a glance. J Cell Sci 2024; 137:jcs261899. [PMID: 38940346 PMCID: PMC11234380 DOI: 10.1242/jcs.261899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.
Collapse
Affiliation(s)
- Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jenny L. Pokorny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Pantou MP, Gourzi P, Vlagkouli V, Papatheodorou E, Tsoutsinos A, Nyktari E, Degiannis D, Anastasakis A. A truncating variant altering the extreme C-terminal region of desmoplakin (DSP) suggests the crucial functional role of the region: a case report study. BMC Med Genomics 2023; 16:95. [PMID: 37143080 PMCID: PMC10158133 DOI: 10.1186/s12920-023-01527-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Homozygous truncating mutations located in the C-terminal region of the desmoplakin gene (DSP) are known to mainly cause Carvajal syndrome, an autosomal recessive syndromic form of arrhythmogenic cardiomyopathy with an extra-cardiac cutaneous phenotype. CASE PRESENTATION Here we describe a female proband with a documented arrhythmogenic left ventricular cardiomyopathy and a syncopal episode at the age of 13, who was found homozygous for the novel DSP variant: NM_004415.4:c.8586delC, p.(Ser2863Hisfs*20) at the extreme C-terminal region of the protein, just 8 amino acids upstream the stop codon. She did not have any of the typical dermatological symptoms that characterize Carvajal syndrome. Her brother had died suddenly at the age of 18 during exercise and was found homozygous for the same variant at the post-mortem, while their parents were heterozygous. The region of origin of both parents was the same geographic area of Greece, but they were not aware of any common ancestor. Detailed clinical examination revealed that the mother displayed a mild arrhythmic phenotype, while the father was asymptomatic. CONCLUSION These observations pinpoint to a significant functional role of the extreme C-terminal tail of the protein.
Collapse
Affiliation(s)
- Malena P Pantou
- Molecular Immunopathology, Histocompatibility and Genetics Laboratory, Onassis Cardiac Surgery Center, Kallithea, Greece.
| | - Polyxeni Gourzi
- Molecular Immunopathology, Histocompatibility and Genetics Laboratory, Onassis Cardiac Surgery Center, Kallithea, Greece
| | - Vasiliki Vlagkouli
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Kallithea, Greece
| | - Efstathios Papatheodorou
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Kallithea, Greece
| | - Alexandros Tsoutsinos
- Department of Pediatric Cardiology, Onassis Cardiac Surgery Center, Kallithea, Greece
| | - Eva Nyktari
- CMR Unit, Onassis Cardiac Surgery Center, Kallithea, Greece
| | - Dimitrios Degiannis
- Molecular Immunopathology, Histocompatibility and Genetics Laboratory, Onassis Cardiac Surgery Center, Kallithea, Greece
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Kallithea, Greece
| |
Collapse
|
4
|
Bueren-Calabuig JA, G Bage M, Cowling VH, Pisliakov AV. Mechanism of allosteric activation of human mRNA cap methyltransferase (RNMT) by RAM: insights from accelerated molecular dynamics simulations. Nucleic Acids Res 2019; 47:8675-8692. [PMID: 31329932 PMCID: PMC7145595 DOI: 10.1093/nar/gkz613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 02/04/2023] Open
Abstract
The RNA guanine-N7 methyltransferase (RNMT) in complex with RNMT-activating miniprotein (RAM) catalyses the formation of a N7-methylated guanosine cap structure on the 5' end of nascent RNA polymerase II transcripts. The mRNA cap protects the primary transcript from exonucleases and recruits cap-binding complexes that mediate RNA processing, export and translation. By using microsecond standard and accelerated molecular dynamics simulations, we provide for the first time a detailed molecular mechanism of allosteric regulation of RNMT by RAM. We show that RAM selects the RNMT active site conformations that are optimal for binding of substrates (AdoMet and the cap), thus enhancing their affinity. Furthermore, our results strongly suggest the likely scenario in which the cap binding promotes the subsequent AdoMet binding, consistent with the previously suggested cooperative binding model. By employing the network community analyses, we revealed the underlying long-range allosteric networks and paths that are crucial for allosteric regulation by RAM. Our findings complement and explain previous experimental data on RNMT activity. Moreover, this study provides the most complete description of the cap and AdoMet binding poses and interactions within the enzyme's active site. This information is critical for the drug discovery efforts that consider RNMT as a promising anti-cancer target.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Marcus G Bage
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| |
Collapse
|
5
|
Tang JD, Mura C, Lampe KJ. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering. J Am Chem Soc 2019; 141:4886-4899. [PMID: 30830776 DOI: 10.1021/jacs.8b13363] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Short peptides are uniquely versatile building blocks for self-assembly. Supramolecular peptide assemblies can be used to construct functional hydrogel biomaterials-an attractive approach for neural tissue engineering. Here, we report a new class of short, five-residue peptides that form hydrogels with nanofiber structures. Using rheology and spectroscopy, we describe how sequence variations, pH, and peptide concentration alter the mechanical properties of our pentapeptide hydrogels. We find that this class of seven unmodified peptides forms robust hydrogels from 0.2-20 kPa at low weight percent (less than 3 wt %) in cell culture media and undergoes shear-thinning and rapid self-healing. The peptides self-assemble into long fibrils with sequence-dependent fibrillar morphologies. These fibrils exhibit a unique twisted ribbon shape, as visualized by transmission electron microscopy (TEM) and Cryo-EM imaging, with diameters in the low tens of nanometers and periodicities similar to amyloid fibrils. Experimental gelation behavior corroborates our molecular dynamics simulations, which demonstrate peptide assembly behavior, an increase in β-sheet content, and patterns of variation in solvent accessibility. Our rapidly assembling pentapeptides for injectable delivery (RAPID) hydrogels are syringe-injectable and support cytocompatible encapsulation of oligodendrocyte progenitor cells (OPCs), as well as their proliferation and three-dimensional process extension. Furthermore, RAPID gels protect OPCs from mechanical membrane disruption and acute loss of viability when ejected from a syringe needle, highlighting the protective capability of the hydrogel as potential cell carriers for transplantation therapies. The tunable mechanical and structural properties of these supramolecular assemblies are shown to be permissive to cell expansion and remodeling, making this hydrogel system suitable as an injectable material for cell delivery and tissue engineering applications.
Collapse
|
6
|
Vymětal J, Jurásková V, Vondrášek J. AMBER and CHARMM Force Fields Inconsistently Portray the Microscopic Details of Phosphorylation. J Chem Theory Comput 2018; 15:665-679. [PMID: 30468703 DOI: 10.1021/acs.jctc.8b00715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phosphorylation of serine, threonine, and tyrosine is one of the most frequently occurring and crucial post-translational modifications of proteins often associated with important structural and functional changes. We investigated the direct effect of phosphorylation on the intrinsic conformational preferences of amino acids as a potential trigger of larger structural events. We conducted a comparative study of force fields on terminally capped amino acids (dipeptides) as the simplest model for phosphorylation. Our bias-exchange metadynamics simulations revealed that all model dipeptides sampled a great heterogeneity of ensembles affected by introduction of mono- and dianionic phosphate groups. However, the detected changes in populations of backbone conformers and side-chain rotamers did not reveal a strong discriminatory shift in preferences, as could be anticipated for the bulky, charged phosphate group. Furthermore, the AMBER and CHARMM force fields provided inconsistent populations of individual conformers as well as net structural trends upon phosphorylation. Detailed analysis of ensembles revealed competition between hydration and formation of internal hydrogen bonds involving amide hydrogens and the phosphate group. The observed difference in hydration free energy and potential for hydrogen bonding in individual force fields could be attributed to the different partial atomic charges used in each force field and, hence, the different parametrization strategies. Nevertheless, conformational propensities and net structural changes upon phosphorylation are difficult to extract from experimental measurements, and existing experimental data provide limited guidance for force field assessment and further development.
Collapse
Affiliation(s)
- Jiří Vymětal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 542/2 , 166 10 Praha 6 , Czech Republic
| | - Veronika Jurásková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 542/2 , 166 10 Praha 6 , Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 542/2 , 166 10 Praha 6 , Czech Republic
| |
Collapse
|