1
|
Mayer-Harnisch CE, Figueroa Paniagua D, Maltseva N, Kim Y, Le VTB, Joachimiak A, Kuhn ML. N-terminal domain swapping: A new paradigm for spermidine/spermine N-acetyltransferase (SSAT) protein structures? Biochem Biophys Res Commun 2025; 748:151302. [PMID: 39823891 PMCID: PMC11808394 DOI: 10.1016/j.bbrc.2025.151302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Enterococcus faecalis is a multi-drug-resistant human pathogen that is found in a variety of environments and is challenging to treat. Under stress conditions, some bacteria regulate intracellular polyamine concentrations via polyamine acetyltransferases to reduce their toxicity. The E. faecalis genome encodes two polyamine acetyltransferases: PmvE and BltD. Both of these proteins belong to the Gcn5-related N-acetyltransferase (GNAT) superfamily. It is unclear why there are two enzymes with similar substrate specificities in this organism. To better understand the structure/function relationship of the E. faecalis BltD enzyme, we determined its crystal structure and performed additional assays to explore its oligomeric state and enzymatic activity. The goal was to determine whether there were structural or catalytic differences between this enzyme and other polyamine acetyltransferases that could explain this redundancy and be exploited for future development of targeted inhibitors for this important human pathogen. We found the BltD enzyme was structurally unique due to its N-terminal domain swapped dimer. However, this enzyme adopts a catalytically active monomer rather than dimer in solution. This indicates the crystal structure we obtained may represent a state that forms at high protein and salt concentrations and at low pH used during crystallization. The BltD dimer found in the crystal may represent a unique view of how an inhibitory peptide or molecule could be designed to occupy its active site. Additionally, this structure shows the extensive flexibility of the N-terminal portion of the E. faecalis BltD enzyme.
Collapse
Affiliation(s)
- Claudia E Mayer-Harnisch
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, 94132, USA
| | - Daniel Figueroa Paniagua
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, 94132, USA
| | - Natalia Maltseva
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Youngchang Kim
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Van Thi Bich Le
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, 94132, USA
| | - Andrzej Joachimiak
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Misty L Kuhn
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, 94132, USA.
| |
Collapse
|
2
|
Roterman I, Stapor K, Dułak D, Konieczny L. Domain swapping: a mathematical model for quantitative assessment of structural effects. FEBS Open Bio 2024. [PMID: 39370305 DOI: 10.1002/2211-5463.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
The domain-swapping mechanism involves the exchange of structural elements within a secondary or supersecondary structure between two (or more) proteins. The present paper proposes to interpret the domain-swapping mechanism using a model that assesses the structure of proteins (and complexes) based on building the structure of a common hydrophobic core in a micelle-like arrangement (a central hydrophobic core with a polar shell in contact with polar water), which has a considerable impact on the stabilisation of the domain structure built by domain swapping. Domains with a hydrophobicity system that is incompatible with the micelle-like structure have also been identified. This incompatibility is the form of structural codes related to biological function.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Krakow, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| | - Dawid Dułak
- ABB Business Services Sp. z o.o. ul, Warszawa, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University - Medical College, Krakow, Poland
| |
Collapse
|
3
|
Human FoxP Transcription Factors as Tractable Models of the Evolution and Functional Outcomes of Three-Dimensional Domain Swapping. Int J Mol Sci 2021; 22:ijms221910296. [PMID: 34638644 PMCID: PMC8508939 DOI: 10.3390/ijms221910296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
The association of two or more proteins to adopt a quaternary complex is one of the most widespread mechanisms by which protein function is modulated. In this scenario, three-dimensional domain swapping (3D-DS) constitutes one plausible pathway for the evolution of protein oligomerization that exploits readily available intramolecular contacts to be established in an intermolecular fashion. However, analysis of the oligomerization kinetics and thermodynamics of most extant 3D-DS proteins shows its dependence on protein unfolding, obscuring the elucidation of the emergence of 3D-DS during evolution, its occurrence under physiological conditions, and its biological relevance. Here, we describe the human FoxP subfamily of transcription factors as a feasible model to study the evolution of 3D-DS, due to their significantly faster dissociation and dimerization kinetics and lower dissociation constants in comparison to most 3D-DS models. Through the biophysical and functional characterization of FoxP proteins, relevant structural aspects highlighting the evolutionary adaptations of these proteins to enable efficient 3D-DS have been ascertained. Most biophysical studies on FoxP suggest that the dynamics of the polypeptide chain are crucial to decrease the energy barrier of 3D-DS, enabling its fast oligomerization under physiological conditions. Moreover, comparison of biophysical parameters between human FoxP proteins in the context of their minute sequence differences suggests differential evolutionary strategies to favor homoassociation and presages the possibility of heteroassociations, with direct impacts in their gene regulation function.
Collapse
|
4
|
Lalwani Prakash D, Gosavi S. Understanding the Folding Mediated Assembly of the Bacteriophage MS2 Coat Protein Dimers. J Phys Chem B 2021; 125:8722-8732. [PMID: 34339197 DOI: 10.1021/acs.jpcb.1c03928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The capsids of RNA viruses such as MS2 are great models for studying protein self-assembly because they are made almost entirely of multiple copies of a single coat protein (CP). Although CP is the minimal repeating unit of the capsid, previous studies have shown that CP exists as a homodimer (CP2) even in an acid-disassembled system, indicating that CP2 is an obligate dimer. Here, we investigate the molecular basis of this obligate dimerization using coarse-grained structure-based models and molecular dynamics simulations. We find that, unlike monomeric proteins of similar size, CP populates a single partially folded ensemble whose "foldedness" is sensitive to denaturing conditions. In contrast, CP2 folds similarly to single-domain proteins populating only the folded and the unfolded ensembles, separated by a prominent folding free energy barrier. Several intramonomer contacts form early, but the CP2 folding barrier is crossed only when the intermonomer contacts are made. A dissection of the structure of CP2 through mutant folding simulations shows that the folding barrier arises both from the topology of CP and the interface contacts of CP2. Together, our results show that CP2 is an obligate dimer because of kinetic stability, that is, dimerization induces a folding barrier and that makes it difficult for proteins in the dimer minimum to partially unfold and access the monomeric state without completely unfolding. We discuss the advantages of this obligate dimerization in the context of dimer design and virus stability.
Collapse
Affiliation(s)
- Digvijay Lalwani Prakash
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
5
|
Ptak-Kaczor M, Banach M, Stapor K, Fabian P, Konieczny L, Roterman I. Solubility and Aggregation of Selected Proteins Interpreted on the Basis of Hydrophobicity Distribution. Int J Mol Sci 2021; 22:ijms22095002. [PMID: 34066830 PMCID: PMC8125953 DOI: 10.3390/ijms22095002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022] Open
Abstract
Protein solubility is based on the compatibility of the specific protein surface with the polar aquatic environment. The exposure of polar residues to the protein surface promotes the protein’s solubility in the polar environment. The aquatic environment also influences the folding process by favoring the centralization of hydrophobic residues with the simultaneous exposure to polar residues. The degree of compatibility of the residue distribution, with the model of the concentration of hydrophobic residues in the center of the molecule, with the simultaneous exposure of polar residues is determined by the sequence of amino acids in the chain. The fuzzy oil drop model enables the quantification of the degree of compatibility of the hydrophobicity distribution observed in the protein to a form fully consistent with the Gaussian 3D function, which expresses an idealized distribution that meets the preferences of the polar water environment. The varied degrees of compatibility of the distribution observed with the idealized one allow the prediction of preferences to interactions with molecules of different polarity, including water molecules in particular. This paper analyzes a set of proteins with different levels of hydrophobicity distribution in the context of the solubility of a given protein and the possibility of complex formation.
Collapse
Affiliation(s)
- Magdalena Ptak-Kaczor
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, Medyczna 7, 30-688 Kraków, Poland; (M.P.-K.); (M.B.)
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, Medyczna 7, 30-688 Kraków, Poland; (M.P.-K.); (M.B.)
| | - Katarzyna Stapor
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Piotr Fabian
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Leszek Konieczny
- Chair of Medical Biochemistry—Jagiellonian University—Medical College, Kopernika 7, 31-034 Kraków, Poland;
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, Medyczna 7, 30-688 Kraków, Poland; (M.P.-K.); (M.B.)
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Correspondence:
| |
Collapse
|
6
|
Mondal B, Nagesh J, Reddy G. Double Domain Swapping in Human γC and γD Crystallin Drives Early Stages of Aggregation. J Phys Chem B 2021; 125:1705-1715. [PMID: 33566611 DOI: 10.1021/acs.jpcb.0c07833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human γD (HγD) and γC (HγC) are two-domain crystallin (Crys) proteins expressed in the nucleus of the eye lens. Structural perturbations in the protein often trigger aggregation, which eventually leads to cataract. To decipher the underlying molecular mechanism, it is important to characterize the partially unfolded conformations, which are aggregation-prone. Using a coarse grained protein model and molecular dynamics simulations, we studied the role of on-pathway folding intermediates in the early stages of aggregation. The multidimensional free energy surface revealed at least three different folding pathways with the population of partially structured intermediates. The two dominant pathways confirm sequential folding of the N-terminal [Ntd] and the C-terminal domains [Ctd], while the third, least favored, pathway involves intermediates where both the domains are partially folded. A native-like intermediate (I*), featuring the folded domains and disrupted interdomain contacts, gets populated in all three pathways. I* forms domain swapped dimers by swapping the entire Ntds and Ctds with other monomers. Population of such oligomers can explain the increased resistance to unfolding resulting in hysteresis observed in the folding experiments of HγD Crys. An ensemble of double domain swapped dimers are also formed during refolding, where intermediates consisting of partially folded Ntds and Ctds swap secondary structures with other monomers. The double domain swapping model presented in our study provides structural insights into the early events of aggregation in Crys proteins and identifies the key secondary structural swapping elements, where introducing mutations will aid in regulating the overall aggregation propensity.
Collapse
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Jayashree Nagesh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| |
Collapse
|
7
|
Terse VL, Gosavi S. The Molecular Mechanism of Domain Swapping of the C-Terminal Domain of the SARS-Coronavirus Main Protease. Biophys J 2020; 120:504-516. [PMID: 33359834 PMCID: PMC7837137 DOI: 10.1016/j.bpj.2020.11.2277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
In three-dimensional domain swapping, two protein monomers exchange a part of their structures to form an intertwined homodimer, whose subunits resemble the monomer. Several viral proteins domain swap to increase their structural complexity or functional avidity. The main protease (Mpro) of the severe acute respiratory syndrome (SARS) coronavirus proteolyzes viral polyproteins and has been a target for anti-SARS drug design. Domain swapping in the α-helical C-terminal domain of Mpro (MproC) locks Mpro into a hyperactive octameric form that is hypothesized to promote the early stages of viral replication. However, in the absence of a complete molecular understanding of the mechanism of domain swapping, investigations into the biological relevance of this octameric Mpro have stalled. Isolated MproC can exist as a monomer or a domain-swapped dimer. Here, we investigate the mechanism of domain swapping of MproC using coarse-grained structure-based models and molecular dynamics simulations. Our simulations recapitulate several experimental features of MproC folding. Further, we find that a contact between a tryptophan in the MproC domain-swapping hinge and an arginine elsewhere forms early during folding, modulates the folding route, and promotes domain swapping to the native structure. An examination of the sequence and the structure of the tryptophan containing hinge loop shows that it has a propensity to form multiple secondary structures and contacts, indicating that it could be stabilized into either the monomer- or dimer-promoting conformations by mutations or ligand binding. Finally, because all residues in the tryptophan loop are identical in SARS-CoV and SARS-CoV-2, mutations that modulate domain swapping may provide insights into the role of octameric Mpro in the early-stage viral replication of both viruses.
Collapse
Affiliation(s)
- Vishram L Terse
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
8
|
Ghanbarpour A, Santos EM, Pinger C, Assar Z, Hossaini Nasr S, Vasileiou C, Spence D, Borhan B, Geiger JH. Human Cellular Retinol Binding Protein II Forms a Domain-Swapped Trimer Representing a Novel Fold and a New Template for Protein Engineering. Chembiochem 2020; 21:3192-3196. [PMID: 32608180 PMCID: PMC8220890 DOI: 10.1002/cbic.202000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/29/2020] [Indexed: 11/07/2022]
Abstract
Domain-swapping is a mechanism for evolving new protein structure from extant scaffolds, and has been an efficient protein-engineering strategy for tailoring functional diversity. However, domain swapping can only be exploited if it can be controlled, especially in cases where various folds can coexist. Herein, we describe the structure of a domain-swapped trimer of the iLBP family member hCRBPII, and suggest a mechanism for domain-swapped trimerization. It is further shown that domain-swapped trimerization can be favored by strategic installation of a disulfide bond, thus demonstrating a strategy for fold control. We further show the domain-swapped trimer to be a useful protein design template by installing a high-affinity metal binding site through the introduction of a single mutation, taking advantage of its threefold symmetry. Together, these studies show how nature can promote oligomerization, stabilize a specific oligomer, and generate new function with minimal changes to the protein sequence.
Collapse
Affiliation(s)
- Alireza Ghanbarpour
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
- Yale University Medical School, Department of Cell Biology, 333 S. Cedar Street, New Haven, CT 06510, USA
| | - Elizabeth M Santos
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
- Dow Performance Silicones, 2200W Salzburg Road, Midland, MI 48686, USA
| | - Cody Pinger
- Department of Biomedical Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48823, USA
| | - Zahra Assar
- Cayman Chemical, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Seyedmehdi Hossaini Nasr
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Dana Spence
- Department of Biomedical Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48823, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Lee K, Yeo KJ, Choi SH, Lee EH, Kim BK, Kim S, Cheong HK, Lee WK, Kim HY, Hwang E, Woo JR, Lee SJ, Hwang KY. Monothiol and dithiol glutaredoxin-1 from Clostridium oremlandii: identification of domain-swapped structures by NMR, X-ray crystallography and HDX mass spectrometry. IUCRJ 2020; 7:1019-1027. [PMID: 33209316 PMCID: PMC7642778 DOI: 10.1107/s2052252520011598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Protein dimerization or oligomerization resulting from swapping part of the protein between neighboring polypeptide chains is known to play a key role in the regulation of protein function and in the formation of protein aggregates. Glutaredoxin-1 from Clostridium oremlandii (cGrx1) was used as a model to explore the formation of multiple domain-swapped conformations, which were made possible by modulating several hinge-loop residues that can form a pivot for domain swapping. Specifically, two alternative domain-swapped structures were generated and analyzed using nuclear magnetic resonance (NMR), X-ray crystallography, circular-dichroism spectroscopy and hydrogen/deuterium-exchange (HDX) mass spectrometry. The first domain-swapped structure (β3-swap) was formed by the hexameric cGrx1-cMsrA complex. The second domain-swapped structure (β1-swap) was formed by monothiol cGrx1 (C16S) alone. In summary, the first domain-swapped structure of an oxidoreductase in a hetero-oligomeric complex is presented. In particular, a single point mutation of a key cysteine residue to serine led to the formation of an intramolecular disulfide bond, as opposed to an intermolecular disulfide bond, and resulted in modulation of the underlying free-energy landscape of protein oligomerization.
Collapse
Affiliation(s)
- Kitaik Lee
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Kwon Joo Yeo
- Division of Magnetic Resonance, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang, Chungbuk 28119, Republic of Korea
| | - Sae Hae Choi
- New Drug Development Center, Osong Medical Innovation Foundation, Osong, Cheongju, Chungbuk 28160, Republic of Korea
| | - Eun Hye Lee
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bo Keun Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sulhee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hae-Kap Cheong
- Division of Magnetic Resonance, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang, Chungbuk 28119, Republic of Korea
| | - Won-Kyu Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Osong, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 38541, Republic of Korea
| | - Eunha Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang, Chungbuk 28119, Republic of Korea
| | - Ju Rang Woo
- New Drug Development Center, Osong Medical Innovation Foundation, Osong, Cheongju, Chungbuk 28160, Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Delfi M, Leone S, Emendato A, Ami D, Borriello M, Natalello A, Iannuzzi C, Picone D. Understanding the self-assembly pathways of a single chain variant of monellin: A first step towards the design of sweet nanomaterials. Int J Biol Macromol 2020; 152:21-29. [PMID: 32088237 DOI: 10.1016/j.ijbiomac.2020.02.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Peptides and proteins possess an inherent tendency to self-assemble, prompting the formation of amyloid aggregates from their soluble and functional states. Amyloids are linked to many devastating diseases, but self-assembling proteins can also represent formidable tools to produce new and sustainable biomaterials for biomedical and biotechnological applications. The mechanism of fibrillar aggregation, which influences the morphology and the properties of the protein aggregates, depend on factors such as pH, ionic strength, temperature, agitation, and protein concentration. We have here used intensive mechanical agitation, with or without beads, to prompt the aggregation of the single-chain derivative of the plant protein monellin, named MNEI, which is a well characterized sweet protein. Transmission electron microscopy confirmed the formation of fibrils several micrometers long, morphologically different from the previously characterized fibers of MNEI. Changes in the protein secondary structures during the aggregation process were monitored by Fourier transform infrared spectroscopy, which detected differences in the conformation of the final aggregates obtained under mechanical agitation. Moreover, soluble oligomers could be detected in the early phases of aggregation by polyacrylamide gel-electrophoresis. These findings emphasize the existence of multiple pathways of fibrillar aggregation for MNEI, which could be exploited for the design of innovative protein-based biomaterials.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Alessandro Emendato
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Clara Iannuzzi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy.
| |
Collapse
|
11
|
Cosolvent effects on the growth of amyloid fibrils. Curr Opin Struct Biol 2020; 60:101-109. [DOI: 10.1016/j.sbi.2019.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023]
|
12
|
Ghosh C, Jana B. Intersubunit Assisted Folding of DNA Binding Domains in Dimeric Catabolite Activator Protein. J Phys Chem B 2020; 124:1411-1423. [DOI: 10.1021/acs.jpcb.9b10941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Catherine Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
13
|
Donnarumma F, Leone S, Delfi M, Emendato A, Ami D, Laurents DV, Natalello A, Spadaccini R, Picone D. Probing structural changes during amyloid aggregation of the sweet protein MNEI. FEBS J 2019; 287:2808-2822. [DOI: 10.1111/febs.15168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Federica Donnarumma
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Serena Leone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Masoud Delfi
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Alessandro Emendato
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Douglas V. Laurents
- Institute of Physical Chemistry ‘Rocasolano’ Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Antonino Natalello
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Roberta Spadaccini
- Department of Science and Technology Università degli Studi del Sannio Benevento Italy
| | - Delia Picone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| |
Collapse
|
14
|
Zalar M, Golovanov AP. New Disulphide Bond in Cystatin-Based Protein Scaffold Prevents Domain-Swap-Mediated Oligomerization and Stabilizes the Functionally Active Form. ACS OMEGA 2019; 4:18248-18256. [PMID: 31720525 PMCID: PMC6844092 DOI: 10.1021/acsomega.9b02269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/18/2019] [Indexed: 05/13/2023]
Abstract
Peptide aptamers built using engineered scaffolds are a valuable alternative to monoclonal antibodies in many research applications because of their smaller size, versatility, specificity for chosen targets, and ease of production. However, inserting peptides needed for target binding may affect the aptamer structure, in turn compromising its activity. We have shown previously that a stefin A-based protein scaffold with AU1 and Myc peptide insertions (SQT-1C) spontaneously forms dimers and tetramers and that inserted loops mediate this process. In the present study, we show that SQT-1C forms tetramers by self-association of dimers and determine the kinetics of monomer-dimer and dimer-tetramer transitions. Using site-directed mutagenesis, we show that while slow domain swapping defines the rate of dimerization, conserved proline P80 is involved in the tetramerization process. We also demonstrate that the addition of a disulphide bond at the base of the engineered loop prevents domain swapping and dimer formation, also preventing subsequent tetramerization. Formation of SQT-1C oligomers compromises the presentation of inserted peptides for target molecule binding, diminishing aptamer activity; however, the introduction of the disulphide bond locking the monomeric state enables maximum specific aptamer activity, while also increasing its thermal and colloidal stability. We conclude that stabilizing scaffold proteins by adding disulphide bonds at peptide insertion sites might be a useful approach in preventing binding-epitope-driven oligomerization, enabling creation of very stable aptamers with maximum binding activity.
Collapse
|
15
|
Mondal B, Reddy G. Cosolvent Effects on the Growth of Protein Aggregates Formed by a Single Domain Globular Protein and an Intrinsically Disordered Protein. J Phys Chem B 2019; 123:1950-1960. [DOI: 10.1021/acs.jpcb.8b11128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| |
Collapse
|
16
|
Huang Y, Gao M, Su Z. Exploring the Roles of Proline in Three-Dimensional Domain Swapping from Structure Analysis and Molecular Dynamics Simulations. Protein J 2018; 37:13-20. [PMID: 29119487 DOI: 10.1007/s10930-017-9747-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) domain swapping is a mechanism to form protein oligomers. It has been proposed that several factors, including proline residues in the hinge region, may affect the occurrence of 3D domain swapping. Although introducing prolines into the hinge region has been found to promote domain swapping for some proteins, the opposite effect has also been observed in several studies. So far, how proline affects 3D domain swapping remains elusive. In this work, based on a large set of 3D domain-swapped structures, we performed a systematic analysis to explore the correlation between the presence of proline in the hinge region and the occurrence of 3D domain swapping. We further analyzed the conformations of proline and pre-proline residues to investigate the roles of proline in 3D domain swapping. We found that more than 40% of the domain-swapped structures contained proline residues in the hinge region. Unexpectedly, conformational transitions of proline residues were rarely observed upon domain swapping. Our analyses showed that hinge regions containing proline residues preferred more extended conformations, which may be beneficial for the occurrence of domain swapping by facilitating opening of the exchanged segments.
Collapse
Affiliation(s)
- Yongqi Huang
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, 430068, China.
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
- Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China.
| | - Meng Gao
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, 430068, China.
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
- Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
17
|
Mascarenhas NM, Terse VL, Gosavi S. Intrinsic Disorder in a Well-Folded Globular Protein. J Phys Chem B 2018; 122:1876-1884. [PMID: 29304275 DOI: 10.1021/acs.jpcb.7b12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The folded structure of the heterodimeric sweet protein monellin mimics single-chain proteins with topology β1-α1-β2-β3-β4-β5 (chain A: β3-β4-β5; chain B: β1-α1-β2). Furthermore, like naturally occurring single-chain proteins of a similar size, monellin folds cooperatively with no detectable intermediates. However, the two monellin chains, A and B, are marginally structured in isolation and fold only upon binding to each other. Thus, monellin presents a unique opportunity to understand the design of intrinsically disordered proteins that fold upon binding. Here, we study the folding of a single-chain variant of monellin (scMn) using simulations of an all heavy-atom structure-based model. These simulations can explain mechanistic details derived from scMn experiments performed using several different structural probes. scMn folds cooperatively in our structure-based simulations, as is also seen in experiments. We find that structure formation near the transition-state ensemble of scMn is not uniformly distributed but is localized to a hairpin-like structure which contains one strand from each chain (β2, β3). Thus, the sequence and the underlying energetics of heterodimeric monellin promote the early formation of the interchain interface (β2-β3). By studying computational scMn mutants whose "interchain" interactions are deleted, we infer that this energy distribution allows the two protein chains to remain largely disordered when this interface is not folded. From these results, we suggest that cutting the protein backbone of a globular protein between residues which lie within its folding nucleus may be one way to construct two disordered fragments which fold upon binding.
Collapse
Affiliation(s)
| | - Vishram L Terse
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bangalore 560065, India
| |
Collapse
|
18
|
Maity H, Reddy G. Thermodynamics and Kinetics of Single-Chain Monellin Folding with Structural Insights into Specific Collapse in the Denatured State Ensemble. J Mol Biol 2018; 430:465-478. [DOI: 10.1016/j.jmb.2017.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/28/2017] [Accepted: 09/09/2017] [Indexed: 01/21/2023]
|
19
|
Mascarenhas NM, Gosavi S. Understanding protein domain-swapping using structure-based models of protein folding. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 128:113-120. [PMID: 27867057 PMCID: PMC7127520 DOI: 10.1016/j.pbiomolbio.2016.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023]
Abstract
In domain-swapping, two or more identical protein monomers exchange structural elements and fold into dimers or multimers whose units are structurally similar to the original monomer. Domain-swapping is of biotechnological interest because inhibiting domain-swapping can reduce disease-causing fibrillar protein aggregation. To achieve such inhibition, it is important to understand both the energetics that stabilize the domain-swapped structure and the protein dynamics that enable the swapping. Structure-based models (SBMs) encode the folded structure of the protein in their potential energy functions. SBMs have been successfully used to understand diverse aspects of monomer folding. Symmetrized SBMs model interactions between two identical protein chains using only intra-monomer interactions. Molecular dynamics simulations of such symmetrized SBMs have been used to correctly predict the domain-swapped structure and to understand the mechanism of domain-swapping. Here, we review such models and illustrate that monomer topology determines key aspects of domain-swapping. However, in some proteins, specifics of local energetic interactions modulate domain-swapping and these need to be added to the symmetrized SBMs. We then summarize some general principles of the mechanism of domain-swapping that emerge from the symmetrized SBM simulations. Finally, using our own results, we explore how symmetrized SBMs could be used to design domain-swapping in proteins.
Collapse
Affiliation(s)
- Nahren Manuel Mascarenhas
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| |
Collapse
|