1
|
Liu X, Liu C, Song X, Ding X, Wang H, Yu B, Liu H, Han B, Li X, Jiang J. Cofacial porphyrin organic cages. Metals regulating excitation electron transfer and CO 2 reduction electrocatalytic properties. Chem Sci 2023; 14:9086-9094. [PMID: 37655043 PMCID: PMC10466316 DOI: 10.1039/d3sc01816d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Herein, we introduce a comprehensive study of the photophysical behaviors and CO2 reduction electrocatalytic properties of a series of cofacial porphyrin organic cages (CPOC-M, M = H2, Co(ii), Ni(ii), Cu(ii), Zn(ii)), which are constructed by the covalent-bonded self-assembly of 5,10,15,20-tetrakis(4-formylphenyl)porphyrin (TFPP) and chiral (2-aminocyclohexyl)-1,4,5,8-naphthalenetetraformyl diimide (ANDI), followed by post-synthetic metalation. Electronic coupling between the TFPP donor and naphthalene-1,4 : 5,8-bis(dicarboximide) (NDI) acceptor in the metal-free cage is revealed to be very weak by UV-vis spectroscopic, electrochemical, and theoretical investigations. Photoexcitation of CPOC-H2, as well as its post-synthetic Zn and Co counterparts, leads to fast energy transfer from the triplet state porphyrin to the NDI unit according to the femtosecond transient absorption spectroscopic results. In addition, CPOC-Co enables much better electrocatalytic activity for CO2 reduction reaction than the other metallic CPOC-M (M = Ni(ii), Cu(ii), Zn(ii)) and monomeric porphyrin cobalt compartment, supplying a partial current density of 18.0 mA cm-2 at -0.90 V with 90% faradaic efficiency of CO.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Chenxi Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiaojuan Song
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Heyuan Liu
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiyou Li
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
2
|
Wilms M, Melendez LV, Hudson RJ, Hall CR, Ratnayake SP, Smith T, Della Gaspera E, Bryant G, Connell TU, Gomez D. Photoinitiated Energy Transfer in Porous-Cage-Stabilised Silver Nanoparticles. Angew Chem Int Ed Engl 2023:e202303501. [PMID: 37186332 DOI: 10.1002/anie.202303501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
We report a new composite material consisting of silver nanoparticles decorated with three-dimensional molecular organic cages based on light absorbing porphyrins. The porphyrin cages serve to both stabilize the particles and allow diffusion and trapping of small molecules close to the metallic surface. Combining these two photoactive components results in a Fano resonant interaction between the porphyrin Soret band and the nanoparticle localised surface plasmon resonance. Time resolved spectroscopy revealed the silver nanoparticles transfer up to 37% of their excited state energy to the stabilising layer of porphyrin cages. These unusual photophysics cause a 2-fold current increase in photoelectrochemical water splitting measurements. The composite structure provides a compelling proof-of-concept for advanced photosensitiser systems with intrinsic porosity for photocatalytic and sensing applications.
Collapse
Affiliation(s)
| | | | - Rohan J Hudson
- The University of Melbourne, School of Chemistry, AUSTRALIA
| | | | | | - Trevor Smith
- The University of Melbourne, School of Chemistry, AUSTRALIA
| | | | - Gary Bryant
- RMIT University, School of Science, AUSTRALIA
| | - Timothy U Connell
- Deakin University, School of Life and Environmental Science, AUSTRALIA
| | - Daniel Gomez
- RMIT University, Chemistry, Melbourne, 3000, Melbourne, AUSTRALIA
| |
Collapse
|
3
|
Ahmed MS, Biswas C, Bhavani B, Prasanthkumar S, Banerjee D, Kumar V, Chetti P, Giribabu L, Rao Soma V, Raavi SSK. Metalated porphyrin-napthalimide based donor-acceptor systems with long-lived triplet states and effective three-photon absorption. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
4
|
Hanna L, Movsesian E, Orozco M, Bernot AR, Asadinamin M, Shenje L, Ullrich S, Zhao Y, Marshall N, Weeks JA, Thomas MB, Teprovich JA, Ward PA. Spectroscopic investigation of the electronic and excited state properties of para-substituted tetraphenyl porphyrins and their electrochemically generated ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121300. [PMID: 35512525 DOI: 10.1016/j.saa.2022.121300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Porphyrins play pivotal roles in many crucial biological processes including photosynthesis. However, there is still a knowledge gap in understanding electronic and excited state implications associated with functionalization of the porphyrin ring system. These effects can have electrochemical and spectroscopic signatures that reveal the complex nature of these somewhat minor substitutions, beyond simple inductive or electronic effect correlations. To obtain a deeper insight into the influences of porphyrin functionalization, four free-base, meso-substituted porphyrins: tetraphenyl porphyrin (TPP), tetra(4-hydroxyphenyl) porphyrin (THPP), tetra(4-carboxyphenyl) porphyrin (TCPP), and tetra(4-nitrophenyl) porphyrin (TNPP), were synthesized, characterized, and investigated. The influence of various substituents, (-hydroxy,-carboxy, and -nitro) in the para position of the meso-substituted phenyl moieties were evaluated by spectroelectrochemical techniques (absorption and fluorescence), femtosecond transient absorption spectroscopy, cyclic and differential pulse voltammetry, ultraviolet photoelectron spectroscopy (UPS), and time-dependent density functional theory (TD-DFT). Spectral features were evaluated for the neutral porphyrins and differences observed among the various porphyrins were further explained using rendered frontier molecular orbitals pertaining to the relevant transitions. Electrochemically generated anionic and cationic porphyrin species indicate similar absorbance spectroscopic signatures attributed to a red-shift in the Soret band. Emissive behavior reveals the emergence of one new fluorescence decay pathway for the ionic porphyrin, distinct from the neutral macrocycle. Femtosecond transient absorption spectroscopy analysis provided further analysis of the implications on the excited-state as a function of the para substituent of the free-base meso-substituted tetraphenyl porphyrins. Herein, we provide an in-depth and comprehensive analysis of the electronic and excited state effects associated with systematically varying the induced dipole at the methine bridge of the free-base porphyrin macrocycle and the spectroscopic signatures related to the neutral, anionic, and cationic species of these porphyrins.
Collapse
Affiliation(s)
- Lauren Hanna
- Advanced Manufacturing and Energy Science, Savannah River National Laboratory, Aiken, SC 29803, USA
| | - Edgar Movsesian
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330, USA
| | - Miguel Orozco
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330, USA
| | - Anthony R Bernot
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330, USA
| | - Mona Asadinamin
- Department of Physics and Astronomy, University of Georgia Athens, GA, USA
| | - Learnmore Shenje
- Department of Physics and Astronomy, University of Georgia Athens, GA, USA
| | - Susanne Ullrich
- Department of Physics and Astronomy, University of Georgia Athens, GA, USA
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia Athens, GA, USA
| | - Nicholas Marshall
- Department of Chemistry and Physics, University of South Carolina-Aiken Aiken, SC, USA
| | - Jason A Weeks
- College of Natural Sciences, University of Texas Austin, Austin, TX, USA
| | - Michael B Thomas
- Advanced Manufacturing and Energy Science, Savannah River National Laboratory, Aiken, SC 29803, USA
| | - Joseph A Teprovich
- Department of Chemistry and Biochemistry, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330, USA.
| | - Patrick A Ward
- Advanced Manufacturing and Energy Science, Savannah River National Laboratory, Aiken, SC 29803, USA.
| |
Collapse
|
5
|
Novoa-Cid M, Melillo A, Ferrer B, Alvaro M, Baldovi HG. Photocatalytic Water Splitting Promoted by 2D and 3D Porphyrin Covalent Organic Polymers Synthesized by Suzuki-Miyaura Carbon-Carbon Coupling. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183197. [PMID: 36144987 PMCID: PMC9503735 DOI: 10.3390/nano12183197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 05/14/2023]
Abstract
This work deals with the synthesis of metal-free and porphyrin-based covalent organic polymers (COPs) by the Suzuki-Miyaura coupling carbon-carbon bond forming reaction to study the photocatalytic overall water splitting performance. Apart from using 5,10,15,20-Tetrakis-(4-bromophenyl)porphyrin, we have chosen different cross-linker monomers to induce 2-dimensional (2D) or 3-dimensional (3D) and different rigidity in their resulting polymeric molecular structure. The synthesised COPs were extensively characterised to reveal that the dimensionality and flexibility of the molecular structure play an intense role in the physical, photochemical, and electronic properties of the polymers. Photoinduced excited state of the COPs was evaluated by nanosecond time-resolved laser transient absorption spectroscopy (TAS) by analysing excited state kinetics and quenching experiments, photocurrent density measurements and photocatalytic deposition of Ru3+ to RuO2, and photocatalysis. In summary, TAS experiments demonstrated that the transient excited state of these polymers has two decay kinetics and exhibit strong interaction with water molecules. Moreover, photocurrent and photocatalytic deposition experiments proved that charges are photoinduced and are found across the COP molecular network, but more important charges can migrate from the surface of the COP to the medium. Among the various COPs tested, COP-3 that has a flexible and 3D molecular structure reached the best photocatalytic performances, achieving a photocatalytic yield of 0.4 mmol H2 × gCOP-3-1 after 3 h irradiation.
Collapse
Affiliation(s)
- Maria Novoa-Cid
- Department of Chemistry, Universitat Politècnica de València, 46022 Valencia, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Arianna Melillo
- Department of Chemistry, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Belén Ferrer
- Department of Chemistry, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Mercedes Alvaro
- Department of Chemistry, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Herme G. Baldovi
- Department of Chemistry, Universitat Politècnica de València, 46022 Valencia, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence:
| |
Collapse
|
6
|
Roy P, Kundu S, Makri N, Fleming GR. Interference between Franck-Condon and Herzberg-Teller Terms in the Condensed-Phase Molecular Spectra of Metal-Based Tetrapyrrole Derivatives. J Phys Chem Lett 2022; 13:7413-7419. [PMID: 35929598 PMCID: PMC9393888 DOI: 10.1021/acs.jpclett.2c01963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The commonly used Franck-Condon (FC) approximation is inadequate for explaining the electronic spectra of compounds that possess vibrations with substantial Herzberg-Teller (HT) couplings. Metal-based tetrapyrrole derivatives, which are ubiquitous natural pigments, often exhibit prominent HT activity. In this paper, we compare the condensed phase spectra of zinc-tetraphenylporphyrin (ZnTPP) and zinc-phthalocyanine (ZnPc), which exhibit vastly different spectral features in spite of sharing a common tetrapyrrole backbone. The absorption and emission spectra of ZnTPP are characterized by a lack of mirror symmetry and nontrivial temperature dependence. In contrast, mirror symmetry is restored, and the nontrivial temperature-dependent features disappear in ZnPc. We attribute these differences to FC-HT interference, which is less pronounced in ZnPc because of a larger FC component in the dipole moment that leads to FC-dominated transitions. A single minimalistic FC-HT vibronic model reproduces all the experimental spectral features of these molecules. These observations suggest that FC-HT interference is highly susceptible to chemical modification.
Collapse
Affiliation(s)
- Partha
Pratim Roy
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Sohang Kundu
- Department
of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Nancy Makri
- Department
of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois
Quantum Information Science & Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Graham R. Fleming
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Asif HM, Khan MA, Zhou Y, Zhang L, Iqbal A, Hussain S, Khalid M, Rani S, Sun R. Synthesis, Characterization and Remarkable Nonlinear Absorption of a Pyridyl Containing Symmetrical Porphyrin-Polyoxometalate Hybrid. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Müller C, Pascher T, Eriksson A, Chabera P, Uhlig J. KiMoPack: A python Package for Kinetic Modeling of the Chemical Mechanism. J Phys Chem A 2022; 126:4087-4099. [PMID: 35700393 PMCID: PMC9251768 DOI: 10.1021/acs.jpca.2c00907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Herein, we present
KiMoPack, an analysis tool for the kinetic modeling of transient spectroscopic data. KiMoPack
enables a state-of-the-art analysis routine including data preprocessing
and standard fitting (global analysis), as well as fitting of complex
(target) kinetic models, interactive viewing of (fit) results, and
multiexperiment analysis via user accessible functions and a graphical
user interface (GUI) enhanced interface. To facilitate its use, this
paper guides the user through typical operations covering a wide range
of analysis tasks, establishes a typical workflow and is bridging
the gap between ease of use for less experienced users and introducing
the advanced interfaces for experienced users. KiMoPack is open source
and provides a comprehensive front-end for preprocessing, fitting
and plotting of 2-dimensional data that simplifies the access to a
powerful python-based data-processing system
and forms the foundation for a well documented, reliable, and reproducible
data analysis.
Collapse
Affiliation(s)
- Carolin Müller
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT) Jena, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Torbjörn Pascher
- Department of Chemical Physics, Lund University, SE-22100 Lund, Sweden
| | - Axl Eriksson
- Department of Chemical Physics, Lund University, SE-22100 Lund, Sweden
| | - Pavel Chabera
- Department of Chemical Physics, Lund University, SE-22100 Lund, Sweden
| | - Jens Uhlig
- Department of Chemical Physics, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
9
|
Khanlarkhani S, Akbarzadeh AR, Rahimi R. A retrospective-prospective survey of porphyrinoid fluorophores: towards new architectures as an electron transfer systems promoter. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Roy P, Kundu S, Valdiviezo J, Bullard G, Fletcher JT, Liu R, Yang SJ, Zhang P, Beratan DN, Therien MJ, Makri N, Fleming GR. Synthetic Control of Exciton Dynamics in Bioinspired Cofacial Porphyrin Dimers. J Am Chem Soc 2022; 144:6298-6310. [PMID: 35353523 PMCID: PMC9011348 DOI: 10.1021/jacs.1c12889] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/29/2022]
Abstract
Understanding how the complex interplay among excitonic interactions, vibronic couplings, and reorganization energy determines coherence-enabled transport mechanisms is a grand challenge with both foundational implications and potential payoffs for energy science. We use a combined experimental and theoretical approach to show how a modest change in structure may be used to modify the exciton delocalization, tune electronic and vibrational coherences, and alter the mechanism of exciton transfer in covalently linked cofacial Zn-porphyrin dimers (meso-beta linked ABm-β and meso-meso linked AAm-m). While both ABm-β and AAm-m feature zinc porphyrins linked by a 1,2-phenylene bridge, differences in the interporphyrin connectivity set the lateral shift between macrocycles, reducing electronic coupling in ABm-β and resulting in a localized exciton. Pump-probe experiments show that the exciton dynamics is faster by almost an order of magnitude in the strongly coupled AAm-m dimer, and two-dimensional electronic spectroscopy (2DES) identifies a vibronic coherence that is absent in ABm-β. Theoretical studies indicate how the interchromophore interactions in these structures, and their system-bath couplings, influence excitonic delocalization and vibronic coherence-enabled rapid exciton transport dynamics. Real-time path integral calculations reproduce the exciton transfer kinetics observed experimentally and find that the linking-modulated exciton delocalization strongly enhances the contribution of vibronic coherences to the exciton transfer mechanism, and that this coherence accelerates the exciton transfer dynamics. These benchmark molecular design, 2DES, and theoretical studies provide a foundation for directed explorations of nonclassical effects on exciton dynamics in multiporphyrin assemblies.
Collapse
Affiliation(s)
- Partha
Pratim Roy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Sohang Kundu
- Department
of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Jesús Valdiviezo
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department
of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - George Bullard
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - James T. Fletcher
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rui Liu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shiun-Jr Yang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peng Zhang
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department
of Physics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Michael J. Therien
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Nancy Makri
- Department
of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois
Quantum Information Science & Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Graham R. Fleming
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Mafukidze DM, Nyokong T. Photocatalytic and solar radiation harvesting potential of a free-base porphyrin-zinc (II) phthalocyanine heterodyad functionalized polystyrene polymer membrane for the degradation of 4-chlorophenol. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Fattah AH, Flatae AM, Farrag A, Agio M. Ultrafast single-photon detection at high repetition rates based on optical Kerr gates under focusing. OPTICS LETTERS 2021; 46:560-563. [PMID: 33528409 DOI: 10.1364/ol.414895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The ultrafast detection of single photons is currently restricted by the limited time resolution (a few picoseconds) of the available single-photon detectors. Optical gates offer a faster time resolution, but so far they have been applied mostly to ensembles of emitters. Here, we demonstrate through a semi-analytical model that the ultrafast time-resolved detection of single quantum emitters can be possible using an optical Kerr shutter at gigahertz rates under focused illumination. This technique provides sub-picosecond time resolution, while keeping a gate efficiency at around 85%. These findings lay the ground for future experimental investigations on the ultrafast dynamics of single quantum emitters, with implications for quantum nanophotonics and molecular physics.
Collapse
|
13
|
Charge separation and singlet fission in covalently linked diketopyrrolopyrrole derivatives and triphenylamine triad in solution. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Mondal B, Bera R, Ghosh S, Nayak SK, Patra A. Investigation of Morphology-Controlled Ultrafast Relaxation Processes of Aggregated Porphyrin. Chemphyschem 2020; 21:2196-2205. [PMID: 33462915 DOI: 10.1002/cphc.202000482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/22/2020] [Indexed: 11/10/2022]
Abstract
Here, we have synthesized rod and flake shaped morphology of porphyrin aggregates from 5, 10, 15, 20-tetra (4-n-octyloxyphenyl) porphyrin (4-opTPP) molecule which are evident from scanning electron microscopy (SEM). The formation of J-type aggregation is evident from steady state and time-resolved fluorescence spectroscopic studies. Ultrafast transient absorption spectroscopic studies reveal that the excited state lifetime is controlled by the morphology and the time constant for S1→S0 relaxation changes from 3.05 ps to 744 ps with changing the shape from rod to flake, respectively. In spite of similar exciton coupling energy in both the aggregates, the flake shaped aggregates undergo a faster exciton relaxation process and the non-radiative relaxation channels are found to depend on the shape of aggregates. The fundamental understanding of morphology controlled ultrafast relaxation processes of aggregated porphyrin is important for designing efficient light harvesting devices.
Collapse
Affiliation(s)
- Bodhisatwa Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Rajesh Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Srijon Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Sandip K Nayak
- Bio-organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India.,Institute of Nano Science and Technology, Habitat Centre, Sector 64, Phase 10, Mohali, 160062, India
| |
Collapse
|
15
|
Photophysical behavior of heme group: Unfolding of hemoglobin and myoglobin in the presence of Gemini surfactants of different molecular architectures. Int J Biol Macromol 2020; 156:576-584. [DOI: 10.1016/j.ijbiomac.2020.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 01/23/2023]
|
16
|
A porphyrin-pyranine dyad for ratiometric fluorescent sensing of intracellular pH. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Moretti L, Kudisch B, Terazono Y, Moore AL, Moore TA, Gust D, Cerullo G, Scholes GD, Maiuri M. Ultrafast Dynamics of Nonrigid Zinc-Porphyrin Arrays Mimicking the Photosynthetic "Special Pair". J Phys Chem Lett 2020; 11:3443-3450. [PMID: 32290662 DOI: 10.1021/acs.jpclett.0c00856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conjugated porphyrin arrays are heavily investigated as efficient molecular systems for photosynthesis and photocatalysis. Recently, a series of one-, two-, and six-zinc-porphyrin arrays, noncovalently linked through benzene-based hubs, have been synthesized with the aim of mimicking the structure and function of the bacteriochlorophyll "special pair" in photosynthetic reaction centers. The excitonically coupled porphyrin subunits are expected to activate additional excited state relaxation channels with respect to the monomer. Here, we unveil the appearance of such supramolecular electronic interactions using ultrafast transient absorption spectroscopy with sub-25 fs time resolution. Upon photoexcitation of the Soret band, we resolve energy trapping within ∼150 fs in a delocalized dark excitonic manifold. Moreover, excitonic interactions promote an additional fast internal conversion from the Q-band to the ground state with an efficiency of up to 60% in the hexamer. These relaxation pathways appear to be common loss channels that limit the lifetime of the exciton states in noncovalently bound molecular aggregates.
Collapse
Affiliation(s)
- Luca Moretti
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan, Italy
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Bryan Kudisch
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Yuichi Terazono
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Devens Gust
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan, Italy
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan, Italy
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
18
|
Yang S, Hu W, Nyakuchena J, Fiankor C, Liu C, Kinigstein ED, Zhang J, Zhang X, Huang J. Unravelling a long-lived ligand-to-metal cluster charge transfer state in Ce–TCPP metal organic frameworks. Chem Commun (Camb) 2020; 56:13971-13974. [DOI: 10.1039/d0cc04116e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the ultrafast charge separation dynamics in porphyrin-based Ce–TCPP MOFs using optical and X-ray transient absorption (XTA) spectroscopy.
Collapse
Affiliation(s)
- Sizhuo Yang
- Department of Chemistry
- Marquette University
- Milwaukee
- USA
| | - Wenhui Hu
- Department of Chemistry
- Marquette University
- Milwaukee
- USA
| | | | | | - Cunming Liu
- X-ray Science Division
- Argonne National Laboratory, Argonne
- USA
| | | | - Jian Zhang
- Department of Chemistry
- University of Nebraska-Lincoln
- Lincoln
- USA
| | - Xiaoyi Zhang
- X-ray Science Division
- Argonne National Laboratory, Argonne
- USA
| | - Jier Huang
- Department of Chemistry
- Marquette University
- Milwaukee
- USA
| |
Collapse
|
19
|
Lopes JMS, Sharma K, Sampaio RN, Batista AA, Ito AS, Machado AEH, Araújo PT, Barbosa Neto NM. Novel insights on the vibronic transitions in free base meso-tetrapyridyl porphyrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:274-279. [PMID: 30414576 DOI: 10.1016/j.saa.2018.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
We present novel results on the free base 5,10,15,20-meso-tetra(pyridyl)-21H,23H-porphyrin (H2TPyP). This molecule presents complex electronic and vibrational properties and despite the vast literature reporting the transitions observed in its absorption and fluorescence spectra, a more accurate interpretation has been kept elusive. In particular, we show that the molecule's Q-band develops into many electronic and vibronic transitions, whose the well-known "four orbital model" finds it difficult to reconcile. Using distinct spectroscopy techniques, we conclude that both Qx- and Qy-bands comprise, in fact, two quasi-degenerated electronic states together with their respective vibronic progressions each. The analysis of the Huang-Rhys factors and complementary time- and polarization-resolved measurements reinforce the need for the proposed Q-band multi features remodeling.
Collapse
Affiliation(s)
- J M S Lopes
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil.
| | - K Sharma
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, United States; Center of Materials for Information Technology (MINT Center) University of Alabama, Tuscaloosa, AL, United States
| | - R N Sampaio
- Department of Chemistry, The University of North Carolina at Chapel Hill, Murray Hall, Chapel Hill, NC, United States
| | - A A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - A S Ito
- College of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - A E H Machado
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil; Special Academic Unit of Physics, Graduate Program in Exact and Technological Sciences, Federal University of Catalão, Catalão, Goiás, Brazil
| | - P T Araújo
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil; Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, United States; Center of Materials for Information Technology (MINT Center) University of Alabama, Tuscaloosa, AL, United States.
| | - N M Barbosa Neto
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
20
|
Zhao F, Zhan X, Lai SH, Zhang L, Liu HY. Photophysical properties and singlet oxygen generation ofmeso-iodinated free-base corroles. RSC Adv 2019; 9:12626-12634. [PMID: 35515858 PMCID: PMC9063762 DOI: 10.1039/c9ra00928k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/18/2019] [Indexed: 01/14/2023] Open
Abstract
In order to study the effect of meso-iodination of free-base corroles on their photophysical character, we designed and synthesized a series of free-base corrole derivatives F10–OH (iodine-free), F10–OH–I (mono-iodo) and F10–OH–2I (di-iodo), with different substitution patterns at the meso-position as candidates for photodynamic therapy (PDT). We employed several optical spectroscopic techniques, including time-resolved spectroscopy from a femtosecond to microsecond and singlet oxygen luminescence to study the properties of excited singlet and triplet states, as well as the singlet oxygen quantum yields. The sub-picosecond internal conversion, ∼1 ps intramolecular vibrational energy redistribution, tens of ps vibrational cooling, are similar across the three corroles. The addition of one (F10–OH–I) and two iodine (F10–OH–2I) atoms to the remote aryl ring of triarylcorroles induces a 4.6-fold and 6.2-fold decrease in fluorescence quantum yields Φfl and a 2.2-fold and 4.9-fold increase in the time constant of intersystem crossing kISC. In addition, a slight increase in intersystem crossing quantum yields ΦT was also observed from F10–OH to F10–OH–2I. It means the intersystem crossing is improved by the iodination, from F10–OH to F10–OH–2I, because of the heavy atom effect. However, the sample F10–OH–I, instead of F10–OH–2I, shows the highest singlet oxygen quantum yield ΦΔ. The effect of corrole macrocycle meso-iodination on its photophysical character.![]()
Collapse
Affiliation(s)
- Fang Zhao
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Physics
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Xuan Zhan
- Department of Chemistry
- The Key Laboratory of Fuel Cell Technology of Guangdong Province
- South China University of Technology
- Guangzhou 510641
- China
| | - Shu-Hui Lai
- Department of Chemistry
- The Key Laboratory of Fuel Cell Technology of Guangdong Province
- South China University of Technology
- Guangzhou 510641
- China
| | - Lei Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Physics
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Hai-Yang Liu
- Department of Chemistry
- The Key Laboratory of Fuel Cell Technology of Guangdong Province
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
21
|
Xu J, Tong X, Yu P, Wenya GE, McGrath T, Fong MJ, Wu J, Wang ZM. Ultrafast Dynamics of Charge Transfer and Photochemical Reactions in Solar Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800221. [PMID: 30581691 PMCID: PMC6299728 DOI: 10.1002/advs.201800221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/05/2018] [Indexed: 05/31/2023]
Abstract
For decades, ultrafast time-resolved spectroscopy has found its way into an increasing number of applications. It has become a vital technique to investigate energy conversion processes and charge transfer dynamics in optoelectronic systems such as solar cells and solar-driven photocatalytic applications. The understanding of charge transfer and photochemical reactions can help optimize and improve the performance of relevant devices with solar energy conversion processes. Here, the fundamental principles of photochemical and photophysical processes in photoinduced reactions, in which the fundamental charge carrier dynamic processes include interfacial electron transfer, singlet excitons, triplet excitons, excitons fission, and recombination, are reviewed. Transient absorption (TA) spectroscopy techniques provide a good understanding of the energy/electron transfer processes. These processes, including excited state generation and interfacial energy/electron transfer, are dominate constituents of solar energy conversion applications, for example, dye-sensitized solar cells and photocatalysis. An outlook for intrinsic electron/energy transfer dynamics via TA spectroscopic characterization is provided, establishing a foundation for the rational design of solar energy conversion devices.
Collapse
Affiliation(s)
- Jing‐Yin Xu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Peng Yu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Gideon Evans Wenya
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Thomas McGrath
- Department of PhysicsLancaster UniversityLancasterLancashireLA14YWUK
| | | | - Jiang Wu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
- Department of Electronic and Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E7JEUK
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| |
Collapse
|
22
|
Meshkov IN, Bulach V, Gorbunova YG, Gostev FE, Nadtochenko VA, Tsivadze AY, Hosseini MW. Tuning photochemical properties of phosphorus(v) porphyrin photosensitizers. Chem Commun (Camb) 2018; 53:9918-9921. [PMID: 28829069 DOI: 10.1039/c7cc06052a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Photosensitizing and emission properties of P(v) porphyrins were studied. The nature of the axial ligands, occupying the apical position on the P centre adopting an octahedral coordination geometry, strongly influences singlet oxygen generation and charge transfer and allows switching between the two processes.
Collapse
Affiliation(s)
- Ivan N Meshkov
- Molecular Tectonics Laboratory, UMR UDS-CNRS, 7140 & icFRC, Université de Strasbourg, F-67000, Strasbourg, France. and A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia.
| | - Véronique Bulach
- Molecular Tectonics Laboratory, UMR UDS-CNRS, 7140 & icFRC, Université de Strasbourg, F-67000, Strasbourg, France.
| | - Yulia G Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia. and N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Fedor E Gostev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow, 119991, Russia
| | - Victor A Nadtochenko
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow, 119991, Russia
| | - Aslan Yu Tsivadze
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia. and N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991, Russia
| | - Mir Wais Hosseini
- Molecular Tectonics Laboratory, UMR UDS-CNRS, 7140 & icFRC, Université de Strasbourg, F-67000, Strasbourg, France.
| |
Collapse
|
23
|
Jeong D, Kang DG, Joo T, Kim SK. Femtosecond-Resolved Excited State Relaxation Dynamics of Copper (II) Tetraphenylporphyrin (CuTPP) After Soret Band Excitation. Sci Rep 2017; 7:16865. [PMID: 29203809 PMCID: PMC5715150 DOI: 10.1038/s41598-017-17296-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/23/2017] [Indexed: 11/29/2022] Open
Abstract
Excited state relaxation dynamics of Copper (II) tetraphenylporphyrin (CuTPP) after Soret band excitation have been investigated in various solvents by femtosecond broadband transient absorption spectroscopy. Significant role of charge transfer state has been confirmed from fast relaxation of triplet CuTPP in pyridine, giving τ ~ 26.5 ps. In piperidine, the transient measured at 480 nm shows biexponential behavior with distinct time constants of 300 fs and 27.4 ps. The fast component with τ ~ 300 fs is attributed to relaxation of the CuTPP-piperidine adduct populated in the ground state, giving the intrinsic relaxation rate of the CuTPP exciplex for the first time. For CuTPP in O-coordinating solvents of 1,4-dioxane and tetrahydrofuran (THF), a completely new relaxation channel via the 2[dz2, dx2−y2] state is opened. As the exciplex formation is diffusion controlled, triplet CuTPP lifetimes in pure solvents employed here are all measured to be more or less same to give ~30 ps, whereas the 2[dz2, dx2−y2] exciplex formed by the ligation with O-coordinating solvents is found to relax much slowly to the ground state, giving lifetimes of ~360 and ~270 ps in 1,4-dioxane and THF, respectively.
Collapse
Affiliation(s)
- Dahyi Jeong
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea
| | - Dong-Gu Kang
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea
| | - Taiha Joo
- Department of Chemistry, POSTECH, Pohang, 37673, Republic of Korea.
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|