1
|
Zhao C, Yang Y, Zhao P, Shi C, Tan T, Bai H, Feng J. Tuning the Sensitivity of MoS 2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. SMALL METHODS 2025; 9:e2401532. [PMID: 39555656 DOI: 10.1002/smtd.202401532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 11/19/2024]
Abstract
DNA methylation discrimination is often challenged by complicated pretreatment, insufficient sensitivity, and suboptimal accuracy. Here, single-molecule readout of DNA methylation is reported using single-layer MoS2 nanopores. By tuning pore dimension, the sensitivity of MoS2 nanopores is manipulated, empowering both labeling and labeling-free strategies for DNA methylation discrimination. With methyl-CpG-binding domain protein 1 (MBD1)-labeled methylated DNA translocation in customized nanopores, multiple methylated sites with distance as short as 70 bp in double strand DNA can be resolved. To further improve spatial resolution, small MoS2 nanopores are engineered with single-nucleotide sensitivity, realizing labeling-free methylation detection with single-nucleotide resolution to recognize two nucleotides with only one methyl difference. This study demonstrates the availability of engineered MoS2 nanopores in DNA methylation detection, underscoring their potential for epigenetic alteration research at the single-molecule level.
Collapse
Affiliation(s)
- Chunxiao Zhao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibo Yang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Pinlong Zhao
- School of Cyberspace, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Chongbin Shi
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tianhui Tan
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongzhen Bai
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
2
|
Zou A, Zhu X, Fu R, Wang Z, Wang Y, Ruan Z, Xianyu Y, Zhang J. Harnessing Nanomaterials for Next-Generation DNA Methylation Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408246. [PMID: 39821963 DOI: 10.1002/smll.202408246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Indexed: 01/19/2025]
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression and is implicated in diseases such as cancer and atherosclerosis. However, traditional clinical methods for detecting DNA methylation often lack sensitivity and specificity, making early diagnosis challenging. Nanomaterials offer a solution with their unique properties, enabling highly sensitive photochemical and electrochemical detection techniques. These advanced methods enhance the accuracy and efficiency of identifying DNA methylation patterns, providing a powerful tool for early diagnosis and treatment of methylation-related diseases. This review summarizes nanomaterial-based techniques, categorized into electrochemical and photochemical methods for developing next-generation biosensors for DNA methylation. Electrochemical approaches based on nanostructured or nanomaterial-modified electrodes can detect methylation through electrical signals and can directly identify methylation sites via ionic current changes based on nanopore sequencing. Photochemical methods based on nanoparticles allow for optical detection through colorimetry, fluorescence, surface plasmon resonance, and Raman spectroscopy. Nanotechnology-implemented methodologies enable ultrasensitive and selective biosensors as point-of-care platforms for DNA methylation analysis, thereby advancing epigenetic research and clinical diagnostics.
Collapse
Affiliation(s)
- Anlai Zou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| | - Xiaoxue Zhu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ruijie Fu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zexiang Wang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yidan Wang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| | - Yunlei Xianyu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
3
|
Wei J, Hong H, Wang X, Lei X, Ye M, Liu Z. Nanopore-based sensors for DNA sequencing: a review. NANOSCALE 2024; 16:18732-18766. [PMID: 39295590 DOI: 10.1039/d4nr01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Nanopore sensors, owing to their distinctive structural properties, can be used to detect biomolecular translocation events. These sensors operate by monitoring variations in electric current amplitude and duration, thereby enabling the calibration and distinction of various biomolecules. As a result, nanopores emerge as a potentially powerful tool in the field of deoxyribonucleic acid (DNA) sequencing. However, the interplay between testing bandwidth and noise often leads to the loss of part of the critical translocation signals, presenting a substantial challenge for the precise measurement of biomolecules. In this context, innovative detection mechanisms have been developed, including optical detection, tunneling current detection, and nanopore field-effect transistor (FET) detection. These novel detection methods are based on but beyond traditional nanopore techniques and each of them has unique advantages. Notably, nanopore FET sensors stand out for their high signal-to-noise ratio (SNR) and high bandwidth measurement capabilities, overcoming the limitations typically associated with traditional solid-state nanopore (SSN) technologies and thus paving the way for new avenues to biomolecule detection. This review begins by elucidating the fundamental detection principles, development history, applications, and fabrication methods for traditional SSNs. It then introduces three novel detection mechanisms, with a particular emphasis on nanopore FET detection. Finally, a comprehensive analysis of the advantages and challenges associated with both SSNs and nanopore FET sensors is performed, and then insights into the future development trajectories for nanopore FET sensors in DNA sequencing are provided. This review has two main purposes: firstly, to provide researchers with a preliminary understanding of advancements in the nanopore field, and secondly, to offer a comprehensive analysis of the fabrication techniques, transverse current detection principles, challenges, and future development trends in the field of nanopore FET sensors. This comprehensive analysis aims to help give researchers in-depth insights into cutting-edge advancements in the field of nanopore FET sensors.
Collapse
Affiliation(s)
- Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Hao Hong
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Xing Wang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Xin Lei
- School of Chemistry, Beihang University, Beijing, 100084, China
| | - Minjie Ye
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Xiong M, Athreya N, Chakraborty R, Leburton JP. Ion Trapping and Thermionic Emission across Sub-nm Pores. NANO LETTERS 2023; 23:11719-11726. [PMID: 38078825 DOI: 10.1021/acs.nanolett.3c03592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Ionic transport through a graphene biomimetic subnanometer (sub-nm) pore of arbitrary shape and realistically decorated by intrinsic negatively charged sites is investigated by all-atom molecular dynamics (MD) simulations. In the presence of external electric fields, cation trapping-assisted translocation occurs in the vicinity of the 2D subnanometer pore, while the anion current is blocked by the negative charges. The adsorbed cations in such asymmetrically charged nanopores are located on the top of the nanopore instead of blocking the pore, as suggested previously in highly symmetric pores such as crown ethers. Our analysis of the different types of energy involved in ion translocations indicates that electrostatics is the dominant factor controlling ion transfer across these sub-nm pores. A physical model based on the thermionic emission formalism to account for the free energy barriers to ion flow reproduces the I-V characteristics.
Collapse
|
5
|
Zollo G, Civitarese T. Ab Initio Properties of Hybrid Cove-Edged Graphene Nanoribbons as Metallic Electrodes for Peptide Sequencing via Transverse Tunneling Current. ACS OMEGA 2022; 7:25164-25170. [PMID: 35910163 PMCID: PMC9330076 DOI: 10.1021/acsomega.2c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently synthesized metallic cove-edged graphene nanoribbons are considered for use as one-dimensional (1D) electrodes for ideal atomistically resolved recognition of amino acids. To this purpose a narrow nanogap device is considered, and the transversal tunneling current flowing across it is calculated during the translocation of a model Gly homopeptide using the nonequilibrium Green function scheme, based on density functional theory. We show that the signal collected from the metallic spin states is characterized by a double peak per residue in analogy with the results obtained with 1D graphene nanoribbon template electrodes. The presented results pave the way for experimentally feasible atomistically resolved tunneling current recognition using metallic edge engineered graphene electrodes obtained by bottom-up fabrication strategies.
Collapse
Affiliation(s)
- Giuseppe Zollo
- Dipartimento di Scienze di Base e Applicate
per l’Ingegneria, University of Rome
“La Sapienza”, Via Antonio Scarpa 14-16, 00161 Rome, Italy
| | - Tommaso Civitarese
- Dipartimento di Scienze di Base e Applicate
per l’Ingegneria, University of Rome
“La Sapienza”, Via Antonio Scarpa 14-16, 00161 Rome, Italy
| |
Collapse
|
6
|
Srikulwong U, Phanchai W, Srepusharawoot P, Sakonsinsiri C, Puangmali T. Computational Insights into Molecular Adsorption Characteristics of Methylated DNA on Graphene Oxide for Multicancer Early Detection. J Phys Chem B 2021; 125:6697-6708. [PMID: 34110832 DOI: 10.1021/acs.jpcb.1c02808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA methylation is an epigenetic modification involving the transfer of a methyl group to cytosine residues of a DNA molecule. Altered DNA methylation of certain genes is associated with several diseases including cancer. Nanomaterials, such as graphene oxide (GO), offer great potential as sensing elements for methylated DNA (mDNA) detection due to their distinct properties. Understanding molecular interactions between mDNA and GO can make provision for developing a universal cancer screening test. Molecular dynamics (MD) simulation and density functional theory (DFT) calculation have been employed for investigating their detailed macro- and microscale interactions. Based upon the MD simulation, different adsorption levels of methylated and unmethylated DNAs on GO were represented by a contacting surface area (CSA), which depends on surrounding conditions (in water or a MgCl2 solution). In water, the CSAs of the methylated and unmethylated single-stranded DNA (ssDNA) were ≈13 and ≈5 nm2, respectively, representing more preferable adsorption on GO for the methylated ssDNA. In the presence of divalent ions (Mg2+), the CSAs of both methylated and unmethylated DNA molecules were ≈8 nm2, suggesting that there was no significant difference in adsorption in a saline solution. To reveal the electrical property of GO covered by either methylated or unmethylated DNA, its electronic structure was investigated by the DFT calculation. The energy gaps of pristine graphene (pG) and GO adsorbed by 5-methylcytosine (5mC) were 1.6 and 12.9 meV, respectively, while cytosine adsorption resulted in lower energy gaps (1.2 meV for pG and 9.5 meV for GO). When comparing methylated DNA-covered GO with that covered with unmethylated DNA, remarkable differences in electrical conductivity, which were caused by the electronic structure of GO, were observed. These findings will provide a new route for an efficient detection method of DNA methylation, which can further be used to develop a universal cancer test.
Collapse
Affiliation(s)
- Unnop Srikulwong
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Witthawat Phanchai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornjuk Srepusharawoot
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
7
|
Kediya S, Manhas A, Jha PC. DFT/TD‐DFT Based Study to Decipher the Proton Transfer Process in Anion Sensing Mechanism of NTS Molecule. ChemistrySelect 2020. [DOI: 10.1002/slct.202000550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Siddhi Kediya
- School of Applied Material ScienceCentral University of Gujarat Gandhinagar 382030 Gujarat India
| | - Anu Manhas
- School of Chemical SciencesCentral University of Gujarat Gandhinagar 382030 Gujarat India
| | - Prakash C. Jha
- School of Applied Material ScienceCentral University of Gujarat Gandhinagar 382030 Gujarat India
| |
Collapse
|
8
|
Deng C, Naler LB, Lu C. Microfluidic epigenomic mapping technologies for precision medicine. LAB ON A CHIP 2019; 19:2630-2650. [PMID: 31338502 PMCID: PMC6697104 DOI: 10.1039/c9lc00407f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epigenomic mapping of tissue samples generates critical insights into genome-wide regulations of gene activities and expressions during normal development and disease processes. Epigenomic profiling using a low number of cells produced by patient and mouse samples presents new challenges to biotechnologists. In this review, we first discuss the rationale and premise behind profiling epigenomes for precision medicine. We then examine the existing literature on applying microfluidics to facilitate low-input and high-throughput epigenomic profiling, with emphasis on technologies enabling interfacing with next-generation sequencing. We detail assays on studies of histone modifications, DNA methylation, 3D chromatin structures and non-coding RNAs. Finally, we discuss what the future may hold in terms of method development and translational potential.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
9
|
Sarathy A, Athreya NB, Varshney LR, Leburton JP. Classification of Epigenetic Biomarkers with Atomically Thin Nanopores. J Phys Chem Lett 2018; 9:5718-5725. [PMID: 30226383 DOI: 10.1021/acs.jpclett.8b02200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We use the electronic properties of 2D solid-state nanopore materials to propose a versatile and generally applicable biosensor technology by using a combination of molecular dynamics, nanoscale device simulations, and statistical signal processing algorithms. As a case study, we explore the classification of three epigenetic biomarkers, the methyl-CpG binding domain 1 (MBD-1), MeCP2, and γ-cyclodextrin, attached to double-stranded DNA to identify regions of hyper- or hypomethylations by utilizing a matched filter. We assess the sensing ability of the nanopore device to identify the biomarkers based on their characteristic electronic current signatures. Such a matched filter-based classifier enables real-time identification of the biomarkers that can be easily implemented on chip. This integration of a sensor with signal processing architectures could pave the way toward the development of a multipurpose technology for early disease detection.
Collapse
|
10
|
Wu X, Mu F, Wang Y, Zhao H. Graphene and Graphene-Based Nanomaterials for DNA Detection: A Review. Molecules 2018; 23:E2050. [PMID: 30115822 PMCID: PMC6222676 DOI: 10.3390/molecules23082050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
DNA detection with high sensitivity and specificity has tremendous potential as molecular diagnostic agents. Graphene and graphene-based nanomaterials, such as graphene nanopore, graphene nanoribbon, graphene oxide, and reduced graphene oxide, graphene-nanoparticle composites, were demonstrated to have unique properties, which have attracted increasing interest towards the application of DNA detection with improved performance. This article comprehensively reviews the most recent trends in DNA detection based on graphene and graphene-related nanomaterials. Based on the current understanding, this review attempts to identify the future directions in which the field is likely to thrive, and stimulate more significant research in this subject.
Collapse
Affiliation(s)
- Xin Wu
- George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA.
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Fengwen Mu
- Department of Precision Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Yinghui Wang
- Kunshan Branch, Institute of Microelectronics, Chinese Academy of Sciences, Suzhou 215347, China.
| | - Haiyan Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Athreya NBM, Sarathy A, Leburton JP. Large Scale Parallel DNA Detection by Two-Dimensional Solid-State Multipore Systems. ACS Sens 2018; 3:1032-1039. [PMID: 29663800 DOI: 10.1021/acssensors.8b00192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a scalable device design of a dense array of multiple nanopores made from nanoscale semiconductor materials to detect and identify translocations of many biomolecules in a massively parallel detection scheme. We use molecular dynamics coupled to nanoscale device simulations to illustrate the ability of this device setup to uniquely identify DNA parallel translocations. We show that the transverse sheet currents along membranes are immune to the crosstalk effects arising from simultaneous translocations of biomolecules through multiple pores, due to their ability to sense only the local potential changes. We also show that electronic sensing across the nanopore membrane offers a higher detection resolution compared to ionic current blocking technique in a multipore setup, irrespective of the irregularities that occur while fabricating the nanopores in a two-dimensional membrane.
Collapse
|
12
|
Heerema S, Vicarelli L, Pud S, Schouten RN, Zandbergen HW, Dekker C. Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore. ACS NANO 2018; 12:2623-2633. [PMID: 29474060 PMCID: PMC5876620 DOI: 10.1021/acsnano.7b08635] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/23/2018] [Indexed: 05/24/2023]
Abstract
Many theoretical studies predict that DNA sequencing should be feasible by monitoring the transverse current through a graphene nanoribbon while a DNA molecule translocates through a nanopore in that ribbon. Such a readout would benefit from the special transport properties of graphene, provide ultimate spatial resolution because of the single-atom layer thickness of graphene, and facilitate high-bandwidth measurements. Previous experimental attempts to measure such transverse inplane signals were however dominated by a trivial capacitive response. Here, we explore the feasibility of the approach using a custom-made differential current amplifier that discriminates between the capacitive current signal and the resistive response in the graphene. We fabricate well-defined short and narrow (30 nm × 30 nm) nanoribbons with a 5 nm nanopore in graphene with a high-temperature scanning transmission electron microscope to retain the crystallinity and sensitivity of the graphene. We show that, indeed, resistive modulations can be observed in the graphene current due to DNA translocation through the nanopore, thus demonstrating that DNA sensing with inplane currents in graphene nanostructures is possible. The approach is however exceedingly challenging due to low yields in device fabrication connected to the complex multistep device layout.
Collapse
|
13
|
Benner SA. Detecting Darwinism from Molecules in the Enceladus Plumes, Jupiter's Moons, and Other Planetary Water Lagoons. ASTROBIOLOGY 2017; 17:840-851. [PMID: 28665680 PMCID: PMC5610385 DOI: 10.1089/ast.2016.1611] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
To the astrobiologist, Enceladus offers easy access to a potential subsurface biosphere via the intermediacy of a plume of water emerging directly into space. A direct question follows: If we were to collect a sample of this plume, what in that sample, through its presence or its absence, would suggest the presence and/or absence of life in this exotic locale? This question is, of course, relevant for life detection in any aqueous lagoon that we might be able to sample. This manuscript reviews physical chemical constraints that must be met by a genetic polymer for it to support Darwinism, a process believed to be required for a chemical system to generate properties that we value in biology. We propose that the most important of these is a repeating backbone charge; a Darwinian genetic biopolymer must be a "polyelectrolyte." Relevant to mission design, such biopolymers are especially easy to recover and concentrate from aqueous mixtures for detection, simply by washing the aqueous mixtures across a polycharged support. Several device architectures are described to ensure that, once captured, the biopolymer meets two other requirements for Darwinism, homochirality and a small building block "alphabet." This approach is compared and contrasted with alternative biomolecule detection approaches that seek homochirality and constrained alphabets in non-encoded biopolymers. This discussion is set within a model for the history of the terran biosphere, identifying points in that natural history where these alternative approaches would have failed to detect terran life. Key Words: Enceladus-Life detection-Europa-Icy moon-Biosignatures-Polyelectrolyte theory of the gene. Astrobiology 17, 840-851.
Collapse
Affiliation(s)
- Steven A Benner
- Foundation for Applied Molecular Evolution , Alachua, Florida
| |
Collapse
|