1
|
Pugsley CE, Isaac RE, Warren NJ, Stacey M, Ferguson CTJ, Cappelle K, Dominguez-Espinosa R, Cayre OJ. Effective delivery and selective insecticidal activity of double-stranded RNA via complexation with diblock copolymer varies with polymer block composition. PEST MANAGEMENT SCIENCE 2024; 80:669-677. [PMID: 37759365 DOI: 10.1002/ps.7793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Chemical insecticides are an important tool to control damaging pest infestations. However, lack of species specificity, the rise of resistance and the demand for biological alternatives with improved ecotoxicity profiles means that chemicals with new modes of action are required. RNA interference (RNAi)-based strategies using double-stranded RNA (dsRNA) as a species-specific bio-insecticide offer an exquisite solution that addresses these issues. Many species, such as the fruit pest Drosophila suzukii, do not exhibit RNAi when dsRNA is orally administered due to degradation by gut nucleases and slow cellular uptake pathways. Thus, delivery vehicles that protect and deliver dsRNA are highly desirable. RESULTS In this work, we demonstrate the complexation of D. suzukii-specific dsRNA for degradation of vha26 mRNA with bespoke diblock copolymers. We study the ex vivo protection of dsRNA against enzymatic degradation by gut enzymes, which demonstrates the efficiency of this system. Flow cytometry then investigates the cellular uptake of Cy3-labelled dsRNA, showing a 10-fold increase in the mean fluorescence intensity of cells treated with polyplexes. The polymer/dsRNA polyplexes induced a significant 87% decrease in the odds of survival of D. suzukii larvae following oral feeding only when formed with a diblock copolymer containing a long neutral block length (1:2 cationic block/neutral block). However, there was no toxicity when fed to the closely related Drosophila melanogaster. CONCLUSION We provide evidence that dsRNA complexation with diblock copolymers is a promising strategy for RNAi-based species-specific pest control, but optimisation of polymer composition is essential for RNAi success. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Charlotte E Pugsley
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - R Elwyn Isaac
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nicholas J Warren
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Martin Stacey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Calum T J Ferguson
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaat Cappelle
- Syngenta Ghent Innovation Center, Gent-Zwijnaarde, Belgium
| | | | - Olivier J Cayre
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Giona RM, Vitorazi L, Loh W. Assessing the Contribution of the Neutral Blocks in DNA/Block-Copolymer Polyplexes: Poly(acrylamide) vs. Poly(ethylene Oxide). Molecules 2023; 28:molecules28010398. [PMID: 36615592 PMCID: PMC9824764 DOI: 10.3390/molecules28010398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The interaction of DNA with different block copolymers, namely poly (trimethylammonium chloride methacryloyoxy)ethyl)-block-poly(acrylamide), i.e., (PTEA)-b-(PAm), and poly (trimethylammonium chloride methacryloyoxy)ethyl)-block-poly(ethylene oxide), i.e., (PTEA)-b-(PEO), was studied. The nature of the cationic block was maintained fixed (PTEA), whereas the neutral blocks contained varying amounts of acrylamide or (ethylene oxide) units. According to results from isothermal titration microcalorimetry measurements, the copolymers interaction with DNA is endothermic with an enthalpy around 4.0 kJ mol−1 of charges for (PTEA)-b-(PAm) and 5.5 kJ mol−1 of charges for (PTEA)-b-(PEO). The hydrodynamic diameters of (PTEA)-b-(PEO)/DNA and (PTEA)-b-(PAm)/DNA polyplexes prepared by titration were around 200 nm at charge ratio (Z+/−) < 1. At Z+/− close and above 1, the (PTEA)50-b-(PAm)50/DNA and (PTEA)50-b-(PAm)200/DNA polyplexes precipitated. Interestingly, (PTEA)50-b-(PAm)1000/DNA polyplexes remained with a size of around 300 nm even after charge neutralization, probably due to the size of the neutral block. Conversely, for (PTEA)96-b-(PEO)100/DNA polyplexes, the size distribution was broad, indicating a more heterogeneous system. Polyplexes were also prepared by direct mixture at Z+/− of 2.0, and they displayed diameters around 120−150 nm, remaining stable for more than 10 days. Direct and reverse titration experiments showed that the order of addition affects both the size and charge of the resulting polyplexes.
Collapse
Affiliation(s)
- Renata Mello Giona
- LaMaFI—Laboratório de Materiais e Fenômenos de Interface, Chemistry Department, Universidade Tecnológica Federal do Paraná (UTFPR), Medianeira, Curitiba 85884-000, Paraná (PR), Brazil
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas 13083-970, São Paulo State (SP), Brazil
| | - Letícia Vitorazi
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas 13083-970, São Paulo State (SP), Brazil
- Laboratório de Materiais Poliméricos, EEIMVR, Universidade Federal Fluminense, Volta Redonda 27255-125, Rio de Janeiro (RJ), Brazil
| | - Watson Loh
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas 13083-970, São Paulo State (SP), Brazil
- Correspondence:
| |
Collapse
|
3
|
Pugsley CE, Isaac RE, Warren NJ, Behra JS, Cappelle K, Dominguez-Espinosa R, Cayre OJ. Protection of Double-Stranded RNA via Complexation with Double Hydrophilic Block Copolymers: Influence of Neutral Block Length in Biologically Relevant Environments. Biomacromolecules 2022; 23:2362-2373. [PMID: 35549247 PMCID: PMC9198985 DOI: 10.1021/acs.biomac.2c00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/03/2022] [Indexed: 12/24/2022]
Abstract
Interaction between the anionic phosphodiester backbone of DNA/RNA and polycations can be exploited as a means of delivering genetic material for therapeutic and agrochemical applications. In this work, quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N,N-dimethylacrylamide) (PQDMAEMA-b-PDMAm) double hydrophilic block copolymers (DHBCs) were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization as nonviral delivery vehicles for double-stranded RNA. The assembly of DHBCs and dsRNA forms distinct polyplexes that were thoroughly characterized to establish a relationship between the length of the uncharged poly(N,N-dimethylacrylamide) (PDMA) block and the polyplex size, complexation efficiency, and colloidal stability. Dynamic light scattering reveals the formation of smaller polyplexes with increasing PDMA lengths, while gel electrophoresis confirms that these polyplexes require higher N/P ratio for full complexation. DHBC polyplexes exhibit enhanced stability in low ionic strength environments in comparison to homopolymer-based polyplexes. In vitro enzymatic degradation assays demonstrate that both homopolymer and DHBC polymers efficiently protect dsRNA from degradation by RNase A enzyme.
Collapse
Affiliation(s)
- Charlotte E. Pugsley
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
- School
of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - R. Elwyn Isaac
- School
of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicholas. J. Warren
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Juliette S. Behra
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kaat Cappelle
- Syngenta
Ghent Innovation Center, Technologiepark 30, B-9052 Gent-Zwijnaarde, Belgium
| | - Rosa Dominguez-Espinosa
- Syngenta
Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42
6EY, England
| | - Olivier. J. Cayre
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
4
|
Pérez-Alfonso D, López-López M, López-Cornejo P, Romero-Azogil L, Benito E, García-Martín MDG, García-Calderón CB, Rosado IV, Balestra FR, Huertas P, García-Calderón M, Moyá ML. Properties of polyplexes formed between a cationic polymer derived from l-arabinitol and nucleic acids. NEW J CHEM 2021. [DOI: 10.1039/d1nj00606a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polyplexes formed between a cationic polymer, PUArab, and both linear and plasmid DNA were studied. The transfection efficiency of PURarab/pDNA was investigated.
Collapse
|
5
|
Salameh JW, Zhou L, Ward SM, Santa Chalarca CF, Emrick T, Figueiredo ML. Polymer-mediated gene therapy: Recent advances and merging of delivery techniques. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1598. [PMID: 31793237 PMCID: PMC7676468 DOI: 10.1002/wnan.1598] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023]
Abstract
The ability to safely and precisely deliver genetic materials to target sites in complex biological environments is vital to the success of gene therapy. Numerous viral and nonviral vectors have been developed and evaluated for their safety and efficacy. This study will feature progress in synthetic polymers as nonviral vectors, which benefit from their chemical versatility, biocompatibility, and ability to carry both therapeutic cargo and targeting moieties. The combination of synthetic gene carrying constructs with advanced delivery techniques promises new therapeutic options for treating and curing genetic disorders. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Janelle W. Salameh
- The Weldon School of Biomedical Engineering and the
Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette,
Indiana
| | - Le Zhou
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | - Sarah M. Ward
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | | | - Todd Emrick
- Polymer Science and Engineering Department, University of
Massachusetts, Amherst, Massachusetts
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences and the
Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette,
Indiana
| |
Collapse
|
6
|
Van Bruggen C, Hexum JK, Tan Z, Dalal RJ, Reineke TM. Nonviral Gene Delivery with Cationic Glycopolymers. Acc Chem Res 2019; 52:1347-1358. [PMID: 30993967 DOI: 10.1021/acs.accounts.8b00665] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of gene therapy, which aims to treat patients by modulating gene expression, has come to fruition and has landed several landmark FDA approvals. Most gene therapies currently rely on viral vectors to deliver nucleic acid cargo into cells, but there is significant interest in moving toward chemical-based methods, such as polymer-based vectors, due to their low cost, immunocompatibility, and tunability. The full potential of polymer-based delivery systems has yet to be realized, however, because most polymeric transfection reagents are either too inefficient or too toxic for use in the clinic. In this Account, we describe developments in carbohydrate-based cationic polymers, termed glycopolymers, for enhanced nonviral gene delivery. As ubiquitous components of biological systems, carbohydrates are a rich class of compounds that can be harnessed to improve the biocompatibility of non-native polymers, such as linear polyamines used for promoting transfection. Reineke et al. developed a new class of carbohydrate-based polymers called poly(glycoamidoamine)s (PGAAs) by step-growth polymerization of linear monosaccharides with linear ethyleneamines. These glycopolymers were shown to be both efficient and biocompatible transfection reagents. Systematic modifications of the structural components of the PGAA system revealed structure-activity relationships important to its function, including its ability to degrade in situ. Expanding upon the development of step-growth glycopolymers, monosaccharides, such as glucose, were functionalized as vinyl-based monomers for the formation of diblock copolymers via radical addition-fragmentation chain-transfer (RAFT) polymerization. Upon complexation with plasmid DNA, the glucose-containing block creates a hydrophilic shell that promotes colloidal stability as effectively as PEG functionalization. An N-acetyl-d-galactosamine variant of this diblock polymer yields colloidally stable particles that show increased receptor-mediated uptake by liver hepatocytes in vitro and promotes liver targeting in mice. Finally, the disaccharide trehalose was incorporated into polycationic structures using both step-growth and RAFT techniques. It was shown that these trehalose-based copolymers imparted increased colloidal stability and yielded plasmid and siRNA polyplexes that resist aggregation upon lyophilization and reconstitution in water. The aforementioned series of glycopolymers use carbohydrates to promote effective and safe delivery of nucleic acid cargo into a variety of human cells types by promoting vehicle degradation, tissue-targeting, colloidal stabilization, and stability toward lyophilization to extend shelf life. Work is currently underway to translate the use of glycopolymers for safe and efficient delivery of nucleic acid cargo for gene therapy and gene editing applications.
Collapse
Affiliation(s)
- Craig Van Bruggen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Joseph K. Hexum
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Zhe Tan
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Rishad J. Dalal
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Chen M, White B, Kasprzak CR, Long TE. Advances in phosphonium-based ionic liquids and poly(ionic liquid)s as conductive materials. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Jung S, Lodge TP, Reineke TM. Structures and Protonation States of Hydrophilic–Cationic Diblock Copolymers and Their Binding with Plasmid DNA. J Phys Chem B 2018; 122:2449-2461. [DOI: 10.1021/acs.jpcb.7b07902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seyoung Jung
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|