1
|
Yang Y, Wang Y, Yan Z, Li Z, Guo P. Effects of interrupting residues on DNA dumbbell structures formed by CCTG tetranucleotide repeats associated with myotonic dystrophy type 2. FEBS Lett 2024; 598:2544-2556. [PMID: 38922834 DOI: 10.1002/1873-3468.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Myotonic dystrophy type 2 (DM2) is a neurogenerative disease caused by caprylic/capric triglyceride (CCTG) tetranucleotide repeat expansions in intron 1 of the cellular nucleic acid-binding protein (CNBP) gene. Non-B DNA structures formed by CCTG repeats can promote genetic instability, whereas interrupting motifs of NCTG (N = A/T/G) within CCTG repeats help to maintain genomic stability. However, whether the interrupting motifs can affect DNA structures of CCTG repeats remains unclear. Here, we report that four CCTG repeats with an interrupting 3'-A/T/G residue formed dumbbell structures, whereas a non-interrupting 3'-C residue resulted in a multi-loop structure exhibiting conformational dynamics that may contribute to a higher tendency of escaping from DNA mismatch repair and causing repeat expansions. The results provide new structural insights into the genetic instability of CCTG repeats in DM2.
Collapse
Affiliation(s)
- Yingquan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| | - Yang Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
- School of Materials Science and Engineering, Tianjin University, China
| | - Zhenzhen Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| | - Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| |
Collapse
|
2
|
Liu Y, Wan L, Ngai CK, Wang Y, Lam SL, Guo P. Structures and conformational dynamics of DNA minidumbbells in pyrimidine-rich repeats associated with neurodegenerative diseases. Comput Struct Biotechnol J 2023; 21:1584-1592. [PMID: 36874156 PMCID: PMC9975016 DOI: 10.1016/j.csbj.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Expansions of short tandem repeats (STRs) are associated with approximately 50 human neurodegenerative diseases. These pathogenic STRs are prone to form non-B DNA structure, which has been considered as one of the causative factors for repeat expansions. Minidumbbell (MDB) is a relatively new type of non-B DNA structure formed by pyrimidine-rich STRs. An MDB is composed of two tetraloops or pentaloops, exhibiting a highly compact conformation with extensive loop-loop interactions. The MDB structures have been found to form in CCTG tetranucleotide repeats associated with myotonic dystrophy type 2, ATTCT pentanucleotide repeats associated with spinocerebellar ataxia type 10, and the recently discovered ATTTT/ATTTC repeats associated with spinocerebellar ataxia type 37 and familial adult myoclonic epilepsy. In this review, we first introduce the structures and conformational dynamics of MDBs with a focus on the high-resolution structural information determined by nuclear magnetic resonance spectroscopy. Then we discuss the effects of sequence context, chemical environment, and nucleobase modification on the structure and thermostability of MDBs. Finally, we provide perspectives on further explorations of sequence criteria and biological functions of MDBs.
Collapse
Affiliation(s)
- Yuan Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Liqi Wan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheuk Kit Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Yang Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
3
|
Wan L, Lam SL, Lee HK, Guo P. Rational design of a reversible Mg 2+/EDTA-controlled molecular switch based on a DNA minidumbbell. Chem Commun (Camb) 2021; 56:10127-10130. [PMID: 32870195 DOI: 10.1039/d0cc03774e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we report that incorporation of an abasic site to DNA minidumbbells formed by natural sequences can lead to significant enhancements in their thermodynamic stability. Based on these stable minidumbbells, the first metal ion-controlled molecular switch which can regulate instant and reversible DNA duplex formation and dissociation has been constructed.
Collapse
Affiliation(s)
- Liqi Wan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
4
|
Guo P, Lam SL. Minidumbbell structures formed by ATTCT pentanucleotide repeats in spinocerebellar ataxia type 10. Nucleic Acids Res 2020; 48:7557-7568. [PMID: 32520333 PMCID: PMC7367182 DOI: 10.1093/nar/gkaa495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a progressive genetic disorder caused by ATTCT pentanucleotide repeat expansions in intron 9 of the ATXN10 gene. ATTCT repeats have been reported to form unwound secondary structures which are likely linked to large-scale repeat expansions. In this study, we performed high-resolution nuclear magnetic resonance spectroscopic investigations on DNA sequences containing two to five ATTCT repeats. Strikingly, we found the first two repeats of all these sequences well folded into highly compact minidumbbell (MDB) structures. The 3D solution structure of the sequence containing two ATTCT repeats was successfully determined, revealing the MDB comprises a regular TTCTA and a quasi TTCT/A pentaloops with extensive stabilizing loop-loop interactions. We further carried out in vitro primer extension assays to examine if the MDB formed in the primer could escape from the proofreading function of DNA polymerase. Results showed that when the MDB was formed at 5-bp or farther away from the priming site, it was able to escape from the proofreading by Klenow fragment of DNA polymerase I and thus retained in the primer. The intriguing structural findings bring about new insights into the origin of genetic instability in SCA10.
Collapse
Affiliation(s)
- Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
5
|
Ngai CK, Lam SL, Lee HK, Guo P. High-Resolution Structures of DNA Minidumbbells Comprising Type II Tetraloops with a Purine Minor Groove Residue. J Phys Chem B 2020; 124:5131-5138. [PMID: 32484672 DOI: 10.1021/acs.jpcb.0c03163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Minidumbbell (MDB) is a newly discovered DNA structure formed by native sequences, which serves as a possible structural intermediate causing repeat expansion mutations in the genome and also a functional structural motif in constructing DNA-based molecular switches. Until now, all the reported MDBs containing two adjacent type II tetraloops were formed by pyrimidine-rich sequences 5'-YYYR YYYR-3' (Y and R represent pyrimidine and purine, respectively), wherein the second and sixth residues folded into the minor groove and interacted with each other. In this study, we have conducted a high-resolution nuclear magnetic resonance (NMR) spectroscopic investigation on alternative MDB-forming sequences and discovered that an MDB could also be formed stably with a purine in the minor groove, which has never been observed in any previously reported DNA type II tetraloops. Our refined NMR solution structures of the two MDBs formed by 5'-CTTG CATG-3' and 5'-CTTG CGTG-3' reveal that the sixth purine residue was driven into the minor groove via base-base stacking with the second thymine residue and adenine stacked better than guanine. The results of our present research work expand the sequence criteria for the formation of MDBs and shed light to explore the significance of MDBs.
Collapse
Affiliation(s)
- Cheuk Kit Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
6
|
Guo P, Lam SL. Unprecedented hydrophobic stabilizations from a reverse wobble T·T mispair in DNA minidumbbell. J Biomol Struct Dyn 2019; 38:1946-1953. [DOI: 10.1080/07391102.2019.1621211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
7
|
Abstract
The DNA minidumbbell (MDB) is a recently identified non-B structure. The reported MDBs contain two TTTA, CCTG, or CTTG type II loops. At present, the knowledge and understanding of the sequence criteria for MDB formation are still limited. In this study, we performed a systematic high-resolution nuclear magnetic resonance (NMR) and native gel study to investigate the effect of sequence variations in tandem repeats on the formation of MDBs. Our NMR results reveal the importance of hydrogen bonds, base-base stacking, and hydrophobic interactions from each of the participating residues. We conclude that in the MDBs formed by tandem repeats, C-G loop-closing base pairs are more stabilizing than T-A loop-closing base pairs, and thymine residues in both the second and third loop positions are more stabilizing than cytosine residues. The results from this study enrich our knowledge on the sequence criteria for the formation of MDBs, paving a path for better exploring their potential roles in biological systems and DNA nanotechnology.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories Hong Kong
| |
Collapse
|