1
|
Guo W, Lu T, Crisci R, Nagao S, Wei T, Chen Z. Determination of protein conformation and orientation at buried solid/liquid interfaces. Chem Sci 2023; 14:2999-3009. [PMID: 36937592 PMCID: PMC10016606 DOI: 10.1039/d2sc06958j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Protein structures at solid/liquid interfaces mediate interfacial protein functions, which are important for many applications. It is difficult to probe interfacial protein structures at buried solid/liquid interfaces in situ at the molecular level. Here, a systematic methodology to determine protein molecular structures (orientation and conformation) at buried solid/liquid interfaces in situ was successfully developed with a combined approach using a nonlinear optical spectroscopic technique - sum frequency generation (SFG) vibrational spectroscopy, isotope labeling, spectra calculation, and computer simulation. With this approach, molecular structures of protein GB1 and its mutant (with two amino acids mutated) were investigated at the polymer/solution interface. Markedly different orientations and similar (but not identical) conformations of the wild-type protein GB1 and its mutant at the interface were detected, due to the varied molecular interfacial interactions. This systematic strategy is general and can be widely used to elucidate protein structures at buried interfaces in situ.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Tieyi Lu
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Ralph Crisci
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Satoshi Nagao
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Ako-gun Kamigouri-cho Hyogo 678-1297 Japan
| | - Tao Wei
- Department of Chemical Engineering, Howard University 2366 Sixth Street NW Washington 20059 DC USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| |
Collapse
|
2
|
Stirnemann G. Recent Advances and Emerging Challenges in the Molecular Modeling of Mechanobiological Processes. J Phys Chem B 2022; 126:1365-1374. [PMID: 35143190 DOI: 10.1021/acs.jpcb.1c10715] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many biological processes result from the effect of mechanical forces on macromolecular structures and on their interactions. In particular, the cell shape, motion, and differentiation directly depend on mechanical stimuli from the extracellular matrix or from neighboring cells. The development of experimental techniques that can measure and characterize the tiny forces acting at the cellular scale and down to the single-molecule, biomolecular level has enabled access to unprecedented details about the involved mechanisms. However, because the experimental observables often do not provide a direct atomistic picture of the corresponding phenomena, particle-based simulations performed at various scales are instrumental in complementing these experiments and in providing a molecular interpretation. Here, we will review the recent key achievements in the field, and we will highlight and discuss the many technical challenges these simulations are facing, as well as suggest future directions for improvement.
Collapse
Affiliation(s)
- Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
3
|
Bedford JT, Poutsma J, Diawara N, Greene LH. The nature of persistent interactions in two model β-grasp proteins reveals the advantage of symmetry in stability. J Comput Chem 2021; 42:600-607. [PMID: 33534913 DOI: 10.1002/jcc.26477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/27/2020] [Accepted: 11/22/2020] [Indexed: 01/25/2023]
Abstract
Two proteins within the β-grasp superfamily, the B1-domain of protein G and the small archaeal modifier protein 1, were investigated to elucidate the key determinants of structural stability at the level of individual interactions. These symmetrical proteins both contain two β-hairpins which form a sheet flanked by a central α-helix. They were subjected to high temperature molecular dynamics simulations and the detailed behavior of each long-range interaction was characterized. The results revealed that in GB1 the most stable region was the C-terminal hairpin and in SAMP1 it was the opposite, the N-terminal hairpin. Experimental results for GB1 support this finding. In conclusion, it appears that the difference in the location and number of hydrophobic interactions dictate the differential stability which is accommodated due to structural symmetry of the β-grasp fold. Thus, the hairpins are interchangeable and in nature this lends itself to adaptability and flexibility.
Collapse
|
4
|
Sharma S, Subramani S, Popa I. Does protein unfolding play a functional role in vivo? FEBS J 2020; 288:1742-1758. [PMID: 32761965 DOI: 10.1111/febs.15508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain-of-function from the perspective of a fine-tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding-induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano-active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics.
Collapse
Affiliation(s)
- Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Smrithika Subramani
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
5
|
Ghosh DK, Ranjan A. The metastable states of proteins. Protein Sci 2020; 29:1559-1568. [PMID: 32223005 PMCID: PMC7314396 DOI: 10.1002/pro.3859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/26/2022]
Abstract
The intriguing process of protein folding comprises discrete steps that stabilize the protein molecules in different conformations. The metastable state of protein is represented by specific conformational characteristics, which place the protein in a local free energy minimum state of the energy landscape. The native-to-metastable structural transitions are governed by transient or long-lived thermodynamic and kinetic fluctuations of the intrinsic interactions of the protein molecules. Depiction of the structural and functional properties of metastable proteins is not only required to understand the complexity of folding patterns but also to comprehend the mechanisms of anomalous aggregation of different proteins. In this article, we review the properties of metastable proteins in context of their stability and capability of undergoing atypical aggregation in physiological conditions.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and DiagnosticsUppal, HyderabadTelanganaIndia
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and DiagnosticsUppal, HyderabadTelanganaIndia
| |
Collapse
|
6
|
Chaimovich A, Leitold C, Dellago C. The generic unfolding of a biomimetic polymer during force spectroscopy. SOFT MATTER 2020; 16:3941-3951. [PMID: 32267254 DOI: 10.1039/c9sm02545f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the help of force spectroscopy, several analytical theories aim at estimating the rate coefficient of folding for various proteins. Nevertheless, a chief bottleneck lies in the fact that there is still no perfect consensus on how does a force generally perturb the crystal-coil transition. Consequently, the goal of our work is in clarifying the generic behavior of most proteins in force spectroscopy; in other words, what general signature does an arbitrary protein exhibit for its rate coefficient as a function of the applied force? By employing a biomimetic polymer in molecular simulations, we focus on evaluating its respective activation energy for unfolding, while pulling on various pairs of its monomers. Above all, we find that in the vicinity of the force-free scenario, this activation energy possesses a negative slope and a negative curvature as a function of the applied force. Our work is in line with the most recent theories for unfolding, which suggest that such a signature is expected for most proteins, and thus, we further reiterate that many of the classical formulae, that estimate the rate coefficient of the crystal-coil transition, are inadequate. Besides, we also present here an analytical expression which experimentalists can use for approximating the activation energy for unfolding; importantly, it is based on measurements for the mean and variance of the distance between the beads which are being pulled. In summary, our work presents an interesting view for protein folding in force spectroscopy.
Collapse
Affiliation(s)
- Aviel Chaimovich
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
7
|
Wei S, Zou X, Tian J, Huang H, Guo W, Chen Z. Control of Protein Conformation and Orientation on Graphene. J Am Chem Soc 2019; 141:20335-20343. [PMID: 31774666 DOI: 10.1021/jacs.9b10705] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphene-based biosensors have attracted considerable attention due to their advantages of label-free detection and high sensitivity. Many such biosensors utilize noncovalent van der Waals force to attach proteins onto graphene surface while preserving graphene's high conductivity. Maintaining the protein structure without denaturation/substantial conformational change and controlling proper protein orientation on the graphene surface are critical for biosensing applications of these biosensors fabricated with proteins on graphene. Based on the knowledge we obtained from our previous experimental study and computer modeling of amino acid residual level interactions between graphene and peptides, here we systemically redesigned an important protein for better conformational stability and desirable orientation on graphene. In this paper, immunoglobulin G (IgG) antibody-binding domain of protein G (protein GB1) was studied to demonstrate how we can preserve the protein native structure and control the protein orientation on graphene surface by redesigning protein mutants. Various experimental tools including sum frequency generation vibrational spectroscopy, attenuated total refection-Fourier transform infrared spectroscopy, fluorescence spectroscopy, and circular dichroism spectroscopy were used to study the protein GB1 structure on graphene, supplemented by molecular dynamics simulations. By carefully designing the protein GB1 mutant, we can avoid strong unfavorable interactions between protein and graphene to preserve protein conformation and to enable the protein to adopt a preferred orientation. The methodology developed in this study is general and can be applied to study different proteins on graphene and beyond. With the knowledge obtained from this research, one could apply this method to optimize protein function on surfaces (e.g., to enhance biosensor sensitivity).
Collapse
Affiliation(s)
- Shuai Wei
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xingquan Zou
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jiayi Tian
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Hao Huang
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Wen Guo
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Zhan Chen
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
8
|
Mechanobiology: protein refolding under force. Emerg Top Life Sci 2018; 2:687-699. [PMID: 33530665 DOI: 10.1042/etls20180044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023]
Abstract
The application of direct force to a protein enables to probe wide regions of its energy surface through conformational transitions as unfolding, extending, recoiling, collapsing, and refolding. While unfolding under force typically displayed a two-state behavior, refolding under force, from highly extended unfolded states, displayed a more complex behavior. The first recording of protein refolding at a force quench step displayed an initial rapid elastic recoil, followed by a plateau phase at some extension, concluding with a collapse to a final state, at which refolding occurred. These findings stirred a lively discussion, which led to further experimental and theoretical investigation of this behavior. It was demonstrated that the polymeric chain of the unfolded protein is required to fully collapse to a globular conformation for the maturation of native structure. This behavior was modeled using one-dimensional free energy landscape over the end-to-end length reaction coordinate, the collective measured variable. However, at low forces, conformational space is not well captured by such models, and using two-dimensional energy surfaces provides further insight into the dynamics of this process. This work reviews the main concepts of protein refolding under constant force, which is essential for understanding how mechanotransducing proteins operate in vivo.
Collapse
|
9
|
The extracellular matrix-myosin pathway in mechanotransduction: from molecule to tissue. Emerg Top Life Sci 2018; 2:727-737. [PMID: 33530663 PMCID: PMC7289002 DOI: 10.1042/etls20180043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/23/2022]
Abstract
Mechanotransduction via the extracellular matrix (ECM)–myosin pathway is involved in determining cell morphology during development and in coupling external transient mechanical stimuli to the reorganization of the cytoskeleton. Here, we present a review on the molecular mechanisms involved in this pathway and how they influence cellular development and organization. We investigate key proteins involved in the ECM–myosin pathway and discuss how specific binding events and conformational changes under force are related to mechanical signaling. We connect these molecular mechanisms with observed morphological changes at the cellular and organism level. Finally, we propose a model encompassing the biomechanical signals along the ECM–myosin pathway and how it could be involved in cell adhesion, cell migration, and tissue architecture.
Collapse
|
10
|
Shmilovich K, Popa I. Modeling Protein-Based Hydrogels under Force. PHYSICAL REVIEW LETTERS 2018; 121:168101. [PMID: 30387621 DOI: 10.1103/physrevlett.121.168101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Hydrogels made from structured polyprotein domains combine the properties of cross-linked polymers with the unfolding phase transition. The use of protein hydrogels as an ensemble approach to study the physics of domain unfolding is limited by the lack of scaling tools and by the complexity of the system. Here we propose a model to describe the biomechanical response of protein hydrogels based on the unfolding and extension of protein domains under force. Our model considers the contributions of the network dynamics of the molecules inside the gels, which have random cross-linking points and random topology. This model reproduces reported macroscopic viscoelastic effects and constitutes an important step toward using rheometry on protein hydrogels to scale down to the average mechanical response of protein molecules.
Collapse
Affiliation(s)
- Kirill Shmilovich
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, Wisconsin 53211, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Ave., Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
11
|
Izadi D, Chen Y, Whitmore ML, Slivka JD, Ching K, Lapidus LJ, Comstock MJ. Combined Force Ramp and Equilibrium High-Resolution Investigations Reveal Multipath Heterogeneous Unfolding of Protein G. J Phys Chem B 2018; 122:11155-11165. [DOI: 10.1021/acs.jpcb.8b06199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dena Izadi
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yujie Chen
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Miles L. Whitmore
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Joseph D. Slivka
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kevin Ching
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lisa J. Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Matthew J. Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Berkovich R, Fernandez VI, Stirnemann G, Valle-Orero J, Fernández JM. Segmentation and the Entropic Elasticity of Modular Proteins. J Phys Chem Lett 2018; 9:4707-4713. [PMID: 30058807 DOI: 10.1021/acs.jpclett.8b01925] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-molecule force spectroscopy utilizes polyproteins, which are composed of tandem modular domains, to study their mechanical and structural properties. Under the application of external load, the polyproteins respond by unfolding and refolding domains to acquire the most favored extensibility. However, unlike single-domain proteins, the sequential unfolding of the each domain modifies the free energy landscape (FEL) of the polyprotein nonlinearly. Here we use force-clamp (FC) spectroscopy to measure unfolding and collapse-refolding dynamics of polyubiquitin and poly(I91). Their reconstructed unfolding FEL involves hundreds of kB T in accumulating work performed against conformational entropy, which dwarfs the ∼30 kB T that is typically required to overcome the free energy difference of unfolding. We speculate that the additional entropic energy caused by segmentation of the polyprotein to individual proteins plays a crucial role in defining the "shock absorber" properties of elastic proteins such as the giant muscle protein titin.
Collapse
Affiliation(s)
- Ronen Berkovich
- Department of Chemical Engineering , Ben-Gurion University of the Negev , Beer-Sheva 8410501 , Israel
| | - Vicente I Fernandez
- Institut für Umweltingenieurwissenschaften , ETH Zurich , Zürich 8093 , Switzerland
| | - Guillaume Stirnemann
- CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique , PSL University, Université Paris Denis Diderot, Sorbonne Paris Cité , 75005 Paris , France
| | - Jessica Valle-Orero
- Laboratoire de Physique Statistique, École Normale Supérieure , PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS , 24 rue Lhomond , 75005 Paris , France
| | - Julio M Fernández
- Department of Biological Sciences , Columbia University , New York , New York 10027 , United States
| |
Collapse
|