1
|
Parker JE, Rodriguez RA. Development of a charged model of the SARS-CoV-2 viral surface. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184136. [PMID: 36746311 PMCID: PMC9898061 DOI: 10.1016/j.bbamem.2023.184136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/06/2023]
Abstract
A recent study provided experimental evidence of inactivation of viral activity after radio-frequency (RF) exposures in the 6-12 GHz band that was hypothesized to be caused by vibrations of an acoustic dipole mode in the virus that excited the viral membrane to failure. Here, we develop an atomic-scale molecular dynamics (MD) model of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral surface to estimate the electric fields necessary to rupture the viral membrane via dipole shaking of the virus. We computed the absorption spectrum of the system via unbiased MD simulations and found no particular strong absorption in the GHz band. We investigated the mechanical resiliency of the viral membrane by introducing uniaxial strains in the system and observed no pore formation in the membrane for strains up to 50%. Because the computed absorption spectrum was found to be essentially flat, and the strain required to break the viral membrane was >0.5, the field strength associated with rupture of the virus was greater than the dielectric breakdown value of air. Thus, RF disinfection of enveloped viruses would occur only once sufficient heat was transferred to the virus via a thermal mechanism and not by direct action (shaking) of the RF field oscillations on the viral membrane.
Collapse
Affiliation(s)
- James E Parker
- General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX, 78234-2644, United States.
| | - Roberto A Rodriguez
- General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX, 78234-2644, United States.
| |
Collapse
|
2
|
Schroer MA, Schewa S, Gruzinov AY, Rönnau C, Lahey-Rudolph JM, Blanchet CE, Zickmantel T, Song YH, Svergun DI, Roessle M. Probing the existence of non-thermal Terahertz radiation induced changes of the protein solution structure. Sci Rep 2021; 11:22311. [PMID: 34785744 PMCID: PMC8595702 DOI: 10.1038/s41598-021-01774-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
During the last decades discussions were taking place on the existence of global, non-thermal structural changes in biological macromolecules induced by Terahertz (THz) radiation. Despite numerous studies, a clear experimental proof of this effect for biological particles in solution is still missing. We developed a setup combining THz-irradiation with small angle X-ray scattering (SAXS), which is a sensitive method for detecting the expected structural changes. We investigated in detail protein systems with different shape morphologies (bovine serum albumin, microtubules), which have been proposed to be susceptible to THz-radiation, under variable parameters (THz wavelength, THz power densities up to 6.8 mW/cm2, protein concentrations). None of the studied systems and conditions revealed structural changes detectable by SAXS suggesting that the expected non-thermal THz-induced effects do not lead to alterations of the overall structures, which are revealed by scattering from dissolved macromolecules. This leaves us with the conclusion that, if such effects are present, these are either local or outside of the spectrum and power range covered by the present study.
Collapse
Affiliation(s)
- Martin A. Schroer
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany ,grid.5718.b0000 0001 2187 5445Present Address: Nanoparticle Process Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| | - Siawosch Schewa
- University of Applied Sciences Luebeck, Moenkhofer Weg 239, 23562 Luebeck, Germany
| | - Andrey Yu. Gruzinov
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Christian Rönnau
- grid.4562.50000 0001 0057 2672Institute of Physics, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | | | - Clement E. Blanchet
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Till Zickmantel
- grid.4562.50000 0001 0057 2672Institute of Physics, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Young-Hwa Song
- grid.4562.50000 0001 0057 2672Institute of Physics, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Dmitri I. Svergun
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Manfred Roessle
- University of Applied Sciences Luebeck, Moenkhofer Weg 239, 23562 Luebeck, Germany
| |
Collapse
|
3
|
Hough CM, Purschke DN, Bell C, Kalra AP, Oliva PJ, Huang C, Tuszynski JA, Warkentin BJ, Hegmann FA. Disassembly of microtubules by intense terahertz pulses. BIOMEDICAL OPTICS EXPRESS 2021; 12:5812-5828. [PMID: 34692217 PMCID: PMC8515977 DOI: 10.1364/boe.433240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The biological effects of terahertz (THz) radiation have been observed across multiple levels of biological organization, however the sub-cellular mechanisms underlying the phenotypic changes remain to be elucidated. Filamentous protein complexes such as microtubules are essential cytoskeletal structures that regulate diverse biological functions, and these may be an important target for THz interactions underlying THz-induced effects observed at the cellular or tissue level. Here, we show disassembly of microtubules within minutes of exposure to extended trains of intense, picosecond-duration THz pulses. Further, the rate of disassembly depends on THz intensity and spectral content. As inhibition of microtubule dynamics is a mechanism of clinically-utilized anti-cancer agents, disruption of microtubule networks may indicate a potential therapeutic mechanism of intense THz pulses.
Collapse
Affiliation(s)
- Cameron M. Hough
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David N. Purschke
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Clayton Bell
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Aarat P. Kalra
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Currently with the Department of Chemistry, Frick Chemistry Laboratory, Princeton University, Princeton, NJ 08540, USA
| | - Patricia J. Oliva
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Chenxi Huang
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jack A. Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Brad J. Warkentin
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Frank A. Hegmann
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
4
|
Zangari A, Micheli D, Galeazzi R, Tozzi A. Node of Ranvier as an Array of Bio-Nanoantennas for Infrared Communication in Nerve Tissue. Sci Rep 2018; 8:539. [PMID: 29323217 PMCID: PMC5764955 DOI: 10.1038/s41598-017-18866-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/18/2017] [Indexed: 01/21/2023] Open
Abstract
Electromagnetic radiation, in the visible and infrared spectrum, is increasingly being investigated for its possible role in the most evolved brain capabilities. Beside experimental evidence of electromagnetic cellular interactions, the possibility of light propagation in the axon has been recently demonstrated using computational modelling, although an explanation of its source is still not completely understood. We studied electromagnetic radiation onset and propagation at optical frequencies in myelinated axons, under the assumption that ion channel currents in the node of Ranvier behave like an array of nanoantennas emitting in the wavelength range from 300 to 2500 nm. Our results suggest that the wavelengths below 1600 nm are most likely to propagate throughout myelinated segments. Therefore, a broad wavelength window exists where both generation and propagation could happen, which in turn raises the possibility that such a radiation may play some role in neurotransmission.
Collapse
Affiliation(s)
- Andrea Zangari
- Azienda Ospedaliera San Camillo Forlanini, Pediatric Surgery and Urology Unit, Circonvallazione Gianicolense 87-00152, Roma, Italy
| | - Davide Micheli
- TIM S.P.A., Wireless Access Engineering Department, Viale Parco de' Medici, 61 - 00148, Roma, Italy.
| | - Roberta Galeazzi
- Dipartimento di Scienze della Vita e dell'Ambiente, università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Antonio Tozzi
- UOC Fisica Sanitaria, Azienda USL Toscana Sud Est, via Senese 161, 58100, Grosseto, Italy
| |
Collapse
|
5
|
Martin DR, Matyushov DV. Terahertz absorption of lysozyme in solution. J Chem Phys 2017; 147:084502. [DOI: 10.1063/1.4989641] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel R. Martin
- Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287,
USA
| | - Dmitry V. Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287,
USA
| |
Collapse
|