1
|
Kasapenko N, Orlova T, Kondratyuk N. Microsecond-scale observation of phase transition and diffusion in 5CB liquid crystal at the molecular level. J Chem Phys 2025; 162:154901. [PMID: 40231887 DOI: 10.1063/5.0267377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Molecular dynamics methods have proven their applicability for the simulation of the structure and properties of liquid crystals. For the reproduction of phase transitions in liquid crystals, many authors have reparameterized the classical force fields. For the first time, we demonstrate that even a general-purpose force field, for example, General AMBER Force Field (GAFF), without modifications is also capable of reproducing an isotropic-nematic transition at 300 K within microsecond-scale simulations. However, the isotropic-nematic transition enthalpy is overestimated, which leads to higher thermodynamic stability of the nematic phase. For the obtained nematic phase, the calculations of self-diffusion are performed during almost 2 μs at different temperatures, which are compared against previous experimental and computational studies. The diffusion coefficients are underestimated compared with the experiment because of stronger molecular interactions. The diffusion anisotropy ratio lies within the experimental observations. Our work justifies the key problems of GAFF in reproducing the properties of the 5CB liquid crystal.
Collapse
Affiliation(s)
- N Kasapenko
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow, Russia
| | - T Orlova
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
- Institute of Physics, Yerevan State University, Yerevan, Armenia
| | - N Kondratyuk
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow, Russia
- HSE University, Moscow, Russia
| |
Collapse
|
2
|
Popov A, Hernandez R. Bottom-Up Construction of the Interaction between Janus Particles. J Phys Chem B 2023; 127:1664-1673. [PMID: 36780204 PMCID: PMC9969965 DOI: 10.1021/acs.jpcb.2c07858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Indexed: 02/14/2023]
Abstract
While the interaction between two uniformly charged spheres─viz colloids─is well-known, the interaction between nonuniformly charged spheres such as Janus particles is not. Specifically, the Derjaguin approximation relates the potential energy between two spherical particles with the interaction energy Vpl per unit area between two planar surfaces. The formalism has been extended to obtain a quadrature expression for the screened electrostatic interaction between Janus colloids with variable relative orientations. The interaction is decomposed into three zones in the parametric space, distinguished by their azimuthal symmetry. Different specific situations are examined to estimate the contributions of these zones to the total energy. The effective potential Vpl is renormalized such that the resulting potential energy is identical with the actual one for the most preferable relative orientations between the Janus particles. The potential energy as a function of the separation distance and the mutual orientation of a pair of particles compares favorably between the analytical (but approximate) form and the rigorous point-wise computational model used earlier. Coarse-grained models of Janus particles can thus implement this potential model efficiently without loss of generality.
Collapse
Affiliation(s)
- Alexander Popov
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rigoberto Hernandez
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Rui G, Allahyarov E, Thomas JJ, Taylor PL, Zhu L. Temperature-Dependent Rotational Dipole Mobility and Devitrification of the Rigid Amorphous Fraction in Unpoled and Poled Biaxially Oriented Poly(vinylidene fluoride). Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guanchun Rui
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio44106-7202, United States
| | - Elshad Allahyarov
- Department of Physics, Case Western Reserve University, Cleveland, Ohio44106-7079, United States
- Theoretical Department, Joint Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya Street, Moscow125412, Russia
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, DüsseldorfD-40225, Germany
| | - John J. Thomas
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts02155, United States
| | - Philip L. Taylor
- Department of Physics, Case Western Reserve University, Cleveland, Ohio44106-7079, United States
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio44106-7202, United States
| |
Collapse
|
4
|
Qu J, Chen Q, Huang W, Zhang L, Liu J. Dispersion and Diffusion Mechanism of Nanofillers with Different Geometries in Bottlebrush Polymers: Insights from Molecular Dynamics Simulation. J Phys Chem B 2022; 126:7761-7770. [PMID: 36169228 DOI: 10.1021/acs.jpcb.2c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dispersion and diffusion mechanism of nanofillers in polymer nanocomposites (PNCs) are crucial for understanding the properties of PNCs, which is of great significance for the design of novel materials. Herein, we investigate the dispersion and diffusion behavior of two geometries of nanofillers, namely, spherical nanoparticles (SNPs) and nanorods (NRs), in bottlebrush polymers by utilizing coarse-grained molecular dynamics simulations. With the increase of the interaction strength between the nanofiller and polymer (εnp), both the SNPs and NRs experience a typical "aggregated phase-dispersed phase-bridged phase" state transition in the bottlebrush polymer matrix. We evaluate the validity of the Stokes-Einstein (SE) equation for predicting the diffusion coefficient of nanofillers in bottlebrush polymers. The results demonstrate that the SE predictions are slightly larger than the simulated values for small SNP sizes because the local viscosity that is felt by small SNPs in the densely grafted bottlebrush polymer does not differ much from the macroscopic viscosity. The relative size of the length of the NRs (L) and the radius of gyration (Rg) of the bottlebrush polymer play a key role in the diffusion of NRs. In addition, we characterize the anisotropic diffusion of NRs to analyze their translational and rotational diffusion. The motion of NRs in the direction perpendicular to the end-to-end vector is more hindered, indicating that there is a strong coupling between the rotation of NRs and the motion of the polymer. The NR motion shows stronger anisotropic diffusion at short time scales because of the steric effects generated by side chains of the bottlebrush polymer. In general, our results provide a fundamental understanding of the dispersion of nanofillers and the microscopic mechanism of nanofiller diffusion in bottlebrush polymers.
Collapse
Affiliation(s)
- Jiajun Qu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qionghai Chen
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Wanhui Huang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
5
|
Cui X, Wang J, Xia G. Enhanced thermal conductivity of nanofluids by introducing Janus particles. NANOSCALE 2021; 14:99-107. [PMID: 34897350 DOI: 10.1039/d1nr05630a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The addition of nanoparticles to a base fluid (i.e., nanofluids) is an effective strategy to achieve a higher thermal conductivity of a fluid. In a common nanofluid, the suspended nanoparticles are mostly symmetrical spheres. In the present paper, we propose to add Janus nanoparticles into a fluid (termed as Janus nanofluids), to further enhance the thermal conductivity of nanofluids. By using molecular dynamics simulations, it is found that the thermal conductivity can be distinctly improved by introducing Janus particles into the nanofluids in contrast with common nanofluids. Based on the calculation results of the molecular radial distribution function around the nanoparticle, and the diffusion coefficient of the base fluid and the Janus nanoparticle, the enhancement in the thermal conductivity of Janus nanofluids is attributed to the enhanced Brownian motion of Janus nanoparticles, which increases the probability of inter-molecular collisions and leads to enhanced energy transfer in nanofluids. The Janus nanofluids proposed in this work provide insights for the design of nanofluids with high thermal conductivity.
Collapse
Affiliation(s)
- Xin Cui
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, College of Energy and Power Engineering, Beijing University of Technology, Beijing 100124, P.R. China.
| | - Jun Wang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, College of Energy and Power Engineering, Beijing University of Technology, Beijing 100124, P.R. China.
| | - Guodong Xia
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, College of Energy and Power Engineering, Beijing University of Technology, Beijing 100124, P.R. China.
| |
Collapse
|
6
|
Lu S, Jayaraman A. Effect of Nanorod Physical Roughness on the Aggregation and Percolation of Nanorods in Polymer Nanocomposites. ACS Macro Lett 2021; 10:1416-1422. [PMID: 35549008 DOI: 10.1021/acsmacrolett.1c00503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Using molecular dynamics simulations, we elucidate the effect of nanorod roughness on nanorod aggregation, dispersion, and percolation in polymer nanocomposites (PNCs). By choosing coarse-grained models that enable systematic variation of the nanorod roughness and by selecting purely repulsive pairwise interactions for nanorods and polymer chains, we show how nanorod roughness affects the entropic driving forces for various PNC morphologies. At this entropically driven limit, we find that increasing nanorod roughness hinders nanorod aggregation and promotes nanorod percolation in the polymer melt. As nanorod roughness increases, the nanorod volume fraction needed to induce nanorod aggregation also increases. Increasing nanorod roughness increases the configurational entropy of the polymer chains and lowers the entropically induced depletion attraction between nanorods.
Collapse
Affiliation(s)
- Shizhao Lu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.,Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Zhao BR, Li B, Shi X. Molecular simulation of the diffusion mechanism of nanorods in cross-linked networks. NANOSCALE 2021; 13:17404-17416. [PMID: 34647122 DOI: 10.1039/d1nr05368j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We study the diffusion of rod-shaped nanocarriers with different rigidities and aspect ratios in cross-linked networks using coarse-grained molecular dynamics (CGMD) simulations. The diffusivity of the nanorods increases with a reduction in the rigidities of the nanorods and network, as well as with an increasing aspect ratio with respect to the same volume fraction of the nanorods. The nanorods show an anisotropic diffusion pathway through translocating along their major axes at short time scales, and the anisotropy of diffusion decreases at long time scales. Meanwhile, the diffusion of the nanorods shows a sub-diffusion regime that deviates from Brownian motion in most cases due to the trapping of the nanorods in a cage composed of the network. The nanorod could hop when it escapes from the cage and the hopping behavior depends on the rigidities of both the nanorod and network, as well as the local network density. The rotational motion of the trapped nanorod also enhances the probability of hopping. Our results may help in the understanding of the microscopic mechanism for the diffusion of rod-shaped and other relevant nanocarriers, in a cross-linked network environment.
Collapse
Affiliation(s)
- Bo-Ran Zhao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Bin Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
8
|
Rajupet S, Rashidi A, Wirth CL. Derjaguin-Landau-Verwey-Overbeek energy landscape of a Janus particle with a nonuniform cap. Phys Rev E 2021; 103:032610. [PMID: 33862750 DOI: 10.1103/physreve.103.032610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 01/09/2023]
Abstract
A colloidal particle is often termed "Janus" when some portion of its surface is coated by a second material which has distinct properties from the native particle. The anisotropy of Janus particles enables unique behavior at interfaces. However, rigorous methodologies to predict Janus particle dynamics at interfaces are required to implement these particles in complex fluid applications. Previous work studying Janus particle dynamics does not consider van der Waals interactions and realistic, nonuniform coating morphology. Here we develop semianalytic equations to accurately calculate the potential landscape, including van der Waals interactions, of a Janus particle with nonuniform coating thickness above a solid boundary. The effects of both nonuniform coating thickness and van der Waals interactions significantly influence the potential landscape of the particle, particularly in high ionic strength solutions, where the particle samples positions very close to the solid boundary. The equations developed herein facilitate more simple, accurate, and less computationally expensive characterization of conservative interactions experienced by a confined Janus particle than previous methods.
Collapse
Affiliation(s)
- Siddharth Rajupet
- Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Aidin Rashidi
- Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Christopher L Wirth
- Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
9
|
Liu Y, Widmer-Cooper A. A dissipative particle dynamics model for studying dynamic phenomena in colloidal rod suspensions. J Chem Phys 2021; 154:104120. [PMID: 33722052 DOI: 10.1063/5.0041285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A dissipative particle dynamics (DPD) model is developed and demonstrated for studying dynamics in colloidal rod suspensions. The solvent is modeled as conventional DPD particles, while individual rods are represented by a rigid linear chain consisting of overlapping solid spheres, which interact with solvent particles through a hard repulsive potential. The boundary condition on the rod surface is controlled using a surface friction between the solid spheres and the solvent particles. In this work, this model is employed to study the diffusion of a single colloid in the DPD solvent and compared with theoretical predictions. Both the translational and rotational diffusion coefficients obtained at a proper surface friction show good agreement with calculations based on the rod size defined by the hard repulsive potential. In addition, the system-size dependence of the diffusion coefficients shows that the Navier-Stokes hydrodynamic interactions are correctly included in this DPD model. Comparing our results with experimental measurements of the diffusion coefficients of gold nanorods, we discuss the ability of the model to correctly describe dynamics in real nanorod suspensions. Our results provide a clear reference point from which the model could be extended to enable the study of colloid dynamics in more complex situations or for other types of particles.
Collapse
Affiliation(s)
- Yawei Liu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
10
|
Yin T, Yang Z, Zhang F, Lin M, Zhang J, Dong Z. Probing the Impact of Surface Chemistry on the Microscopic Interactions between Amphiphilic Janus Nanosheets and Water. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taiheng Yin
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Zihao Yang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Fengfan Zhang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Meiqin Lin
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Juan Zhang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Zhaoxia Dong
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, People’s Republic of China
| |
Collapse
|
11
|
Kondratyuk N, Lenev D, Pisarev V. Transport coefficients of model lubricants up to 400 MPa from molecular dynamics. J Chem Phys 2020; 152:191104. [PMID: 33687262 DOI: 10.1063/5.0008907] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, the predictive power of molecular dynamics methods is demonstrated for the cases of model paraffinic and aromatic lubricant liquids at pressures up to 400 MPa. The shear viscosity and self-diffusion coefficients are calculated for 2,2,4-trimethylpentane (C8H18) at 298 K and 1,1-diphenylethane (C14H14) at 333 K. Three force fields with different levels of accuracy are compared by the ability to predict the experimental data. The Stokes-Einstein correlation between viscosity and self-diffusion is demonstrated for both compounds.
Collapse
Affiliation(s)
- N Kondratyuk
- Joint Institute for High Temperatures Russian Academy of Sciences, Moscow, Russia
| | - D Lenev
- Joint Institute for High Temperatures Russian Academy of Sciences, Moscow, Russia
| | - V Pisarev
- Joint Institute for High Temperatures Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Diffusion Tensors of Arbitrary-Shaped Nanoparticles in Fluid by Molecular Dynamics Simulation. Sci Rep 2019; 9:18943. [PMID: 31831762 PMCID: PMC6908649 DOI: 10.1038/s41598-019-55042-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022] Open
Abstract
The anisotropic diffusive behavior of nanoparticles with complex shapes attracts great interest due to its potential applications in many fields ranging from bionics to aeronautic industry. Although molecular dynamics (MD) simulations are used widely to investigate nanoparticle diffusion properties, universal methods to describe the diffusion process comprehensively are still lacking. Here, we address this problem by introducing diffusion tensor as it can describe translational and rotational diffusion in three dimensions both individually and their coupling. We take carbon triple sphere suspended in argon fluid as our model system. The consistency of our results and velocity autocorrelation function(VAF) method validates our simulations. The coupling between translational and rotational diffusion is observed directly from analyzing diffusion tensor, and quantified by coupling diffusion coefficient. Our simulation reveals non-trivial effect of some factors in diffusion at nanoscale, which was not considered in previous theories. In addition to introducing an effective method to calculate the diffusion tensor in MD simulations, our work also provides insights for understanding the diffusion process of arbitrary-shaped particles in nanoengineering.
Collapse
|
13
|
Kang B, Jo S, Baek J, Nakamura F, Hwang W, Lee H. Role of mechanical flow for actin network organization. Acta Biomater 2019; 90:217-224. [PMID: 30928733 DOI: 10.1016/j.actbio.2019.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/28/2019] [Accepted: 03/26/2019] [Indexed: 11/30/2022]
Abstract
The major cytoskeletal protein actin forms complex networks to provide structural support and perform vital functions in cells. In vitro studies have revealed that the structure of the higher-order actin network is determined primarily by the type of actin binding protein (ABP). By comparison, there are far fewer studies about the role of the mechanical environment for the organization of the actin network. In particular, the duration over which cells reorganize their shape in response to functional demands is relatively short compared to the in vitro protein polymerization time, suggesting that such changes can influence the actin network formation. We hypothesize that mechanical flows in the cytoplasm generated by exogenous and endogenous stimulation play a key role in the spatiotemporal regulation of the actin architecture. To mimic cytoplasmic streaming, we generated a circulating flow using surface acoustic wave in a microfluidic channel and investigated its effect on the formation of networks by actin and ABPs. We found that the mechanical flow affected the orientation and thickness of actin bundles, depending on the type and concentration of ABPs. Our computational model shows that the extent of alignment and thickness of actin bundle are determined by the balance between flow-induced drag forces and the tendency of ABPs to crosslink actin filaments at given angles. These results suggest that local intracellular flows can affect the assembly dynamics and morphology of the actin cytoskeleton. STATEMENT OF SIGNIFICANCE: Spatiotemporal regulation of actin cytoskeleton structure is essential in many cellular functions. It has been shown that mechanical cues including an applied force and geometric boundary can alter the structural characteristics of actin network. However, even though the cytoplasm accounts for a large portion of the cell volume, the effect of the cytoplasmic streaming flow produced during cell dynamics on actin network organization has not been reported. In this study, we demonstrated that the mechanical flow exerted during actin network organization play an important role in determining the orientation and dimension of actin bundle network. Our result will be beneficial in understanding the mechanism of the actin network reorganization occurred during physiological and pathological processes.
Collapse
Affiliation(s)
- Byungjun Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghan Jo
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jonghyeok Baek
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Wonmuk Hwang
- Departments of Biomedical Engineering, Materials Science & Engineering, and Physics & Astronomy, Texas A&M University, College Station, TX 77843, USA; School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
14
|
Chio CC, Tse YLS. Patchy colloidal particles at the fluid-fluid interface. SOFT MATTER 2018; 14:9457-9465. [PMID: 30427374 DOI: 10.1039/c8sm01542b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colloidal particles have significantly different characteristics when they are at interfaces from when they are in the bulk. In this study, we applied Monte Carlo simulations to investigate the stability and dynamics of smooth patchy particles and rough patchy particles near or at the fluid-fluid interface. By adjusting the surface area ratio of the two faces of a smooth Janus particle, we show how its stability, in terms of free energy, in either side of the interface can be tuned relative to the smooth homogeneous particle. We demonstrate how roughness can affect the stability and the orientation of a colloidal particle. Moreover, position-dependent diffusion constants in directions parallel and perpendicular to the interface are calculated for the colloidal particles as a function of distance from the interface. We report drastic slowdowns in the perpendicular diffusivity (and less severe slowdowns for the parallel diffusivity) for all the colloidal particles when they approach the fluid-fluid interface. While such a slowdown is well-known for the fluid-solid interface in the literature in terms of frictional force in hydrodynamics, why this happens for the fluid-fluid interface has not been adequately discussed. We provide evidence for the decrease in terms of discrepancy in the fluid density that leads to depletion forces.
Collapse
Affiliation(s)
- Chung Chi Chio
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | |
Collapse
|
15
|
Abstract
Using large scale molecular dynamics simulations, we study the orientational dynamics of a heated Janus particle which exhibits self-propulsion. The asymmetry in the microscopic interaction of the colloid with the solvent is implemented by choosing different wetting parameters for the two halves of the sphere. This choice leads to a different microscopic Kapitza resistance across the solid-fluid boundary of the two halves of the sphere, and consequently a gradient in temperature is created across the poles of the sphere. It is this self-created temperature gradient which leads to a self-propulsion along the direction of the symmetry axis. In this article, we look at the orientational dynamics of such a system, as well as the subsequent enhancement of the translational diffusivity of the heated Janus colloid at late times. The orientational correlation of the symmetry axis is measured from the simulation and provides a direct access to the rotational diffusion constant. The heating leads to an increase in the rotational diffusivity of the colloid. We quantify this increase in rotational diffusion D r against the temperature difference δT ≡ T(R, 0) - T(R, π) across the poles of the Janus sphere as well as the average surface temperature difference ΔT ≡ T(R) - T(∞) from the ambient fluid. Since the rotational diffusion is determined by the complete flow field in the solvent, we illustrate that comparing D r against δT is misleading and is better quantified when compared against ΔT. The later quantification results in a data collapse for different choices of the microscopic interaction. The average propulsion velocity is also measured for different choices of the wetting parameter. The directionality of self-propulsion changes depending on the microscopic interaction. We show that whenever the attractive interaction of the colloid with the solvent is switched off, the phoretic mobility changes sign. Furthermore, the propulsion velocity is zero for heating below a certain threshold value. This is also corroborated by the probability distribution of the angle between the displacement vector Δr(t) ≡ r(t) - r(0) and the symmetry axis. Finally, we combine the measured propulsion velocity and the rotational diffusion time τ r = 1/2D r to estimate the enhancement in the long time diffusion coefficient of the particle.
Collapse
Affiliation(s)
- Dipanjan Chakraborty
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli 140306, India
| |
Collapse
|