1
|
Cervera J, Levin M, Mafe S. Correcting instructive electric potential patterns in multicellular systems: External actions and endogenous processes. Biochim Biophys Acta Gen Subj 2023; 1867:130440. [PMID: 37527731 DOI: 10.1016/j.bbagen.2023.130440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/19/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Transmembrane electrical potential differences in cells modulate the spatio-temporal distribution of signaling ions and molecules that are instructive for downstream signaling pathways in multicellular systems. The local coupling between bioelectricity and protein transcription patterns allows dynamic subsystems (modules) of cells that share the same bioelectrical state to show similar biochemical downstream processes. METHODS We simulate theoretically how the integration-segregation pattern formed by the different multicellular modules that define a biosystem can be controlled by multicellular potentials. To this end, we couple together the model equations of the bioelectrical network to those of the genetic network. RESULTS The coupling provided by the intercellular junctions and the external microenvironment allows the restoration of the target bioelectrical pattern by changing the transcription rate of specific ion channels, the post-translational blocking of these channels, and changes in the environmental ionic concentrations. CONCLUSIONS The simulations show that the single-cell feedback between bioelectrical and transcriptional processes, together with the coupling provided by the intercellular junctions and the environment, can correct large-scale patterns by means of suitable external actions. GENERAL SIGNIFICANCE This study provides a theoretical advancement in the understanding of how the multicellular bioelectric coupling may guide repolarizing interventions for regenerating a tissue, with potential implications in biomedicine.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain.
| | - Michael Levin
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
2
|
Cell Systems Bioelectricity: How Different Intercellular Gap Junctions Could Regionalize a Multicellular Aggregate. Cancers (Basel) 2021; 13:cancers13215300. [PMID: 34771463 PMCID: PMC8582473 DOI: 10.3390/cancers13215300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Electric potential distributions can act as instructive pre-patterns for development, regeneration, and tumorigenesis in cell systems. The biophysical states influence transcription, proliferation, cell shape, migration, and differentiation through biochemical and biomechanical downstream transduction processes. A major knowledge gap is the origin of spatial patterns in vivo, and their relationship to the ion channels and the electrical synapses known as gap junctions. Understanding this is critical for basic evolutionary developmental biology as well as for regenerative medicine. We computationally show that cells may express connexin proteins with different voltage-gated gap junction conductances as a way to maintain multicellular regions at distinct membrane potentials. We show that increasing the multicellular connectivity via enhanced junction function does not always contribute to the bioelectrical normalization of abnormally depolarized multicellular patches. From a purely electrical junction view, this result suggests that the reduction rather than the increase of specific connexin levels can also be a suitable bioelectrical approach in some cases and time stages. We offer a minimum model that incorporates effective conductances ultimately related to specific ion channel and junction proteins that are amenable to external regulation. We suggest that the bioelectrical patterns and their encoded instructive information can be externally modulated by acting on the mean fields of cell systems, a complementary approach to that of acting on the molecular characteristics of individual cells. We believe that despite the limitations of a biophysically focused model, our approach can offer useful qualitative insights into the collective dynamics of cell system bioelectricity.
Collapse
|
3
|
McMillen P, Oudin MJ, Levin M, Payne SL. Beyond Neurons: Long Distance Communication in Development and Cancer. Front Cell Dev Biol 2021; 9:739024. [PMID: 34621752 PMCID: PMC8491768 DOI: 10.3389/fcell.2021.739024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular communication is important in all aspects of tissue and organism functioning, from the level of single cells, two discreet populations, and distant tissues of the body. Long distance communication networks integrate individual cells into tissues to maintain a complex organism during development, but when communication between cells goes awry, disease states such as cancer emerge. Herein we discuss the growing body of evidence suggesting that communication methods known to be employed by neurons, also exist in other cell types. We identify three major areas of long-distance communication: bioelectric signaling, tunneling nanotubes (TNTs), and macrophage modulation of networks, and draw comparisons about how these systems operate in the context of development and cancer. Bioelectric signaling occurs between cells through exchange of ions and tissue-level electric fields, leading to changes in biochemical gradients and molecular signaling pathways to control normal development and tumor growth and invasion in cancer. TNTs transport key morphogens and other cargo long distances, mediating electrical coupling, tissue patterning, and malignancy of cancer cells. Lastly macrophages maintain long distance signaling networks through trafficking of vesicles during development, providing communication relays and priming favorable microenvironments for cancer metastasis. By drawing comparisons between non-neural long distance signaling in the context of development and cancer we aim to encourage crosstalk between the two fields to cultivate new hypotheses and potential therapeutic strategies.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Samantha L Payne
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| |
Collapse
|
4
|
Cervera J, Levin M, Mafe S. Morphology changes induced by intercellular gap junction blocking: A reaction-diffusion mechanism. Biosystems 2021; 209:104511. [PMID: 34411690 DOI: 10.1016/j.biosystems.2021.104511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023]
Abstract
Complex anatomical form is regulated in part by endogenous physiological communication between cells; however, the dynamics by which gap junctional (GJ) states across tissues regulate morphology are still poorly understood. We employed a biophysical modeling approach combining different signaling molecules (morphogens) to qualitatively describe the anteroposterior and lateral morphology changes in model multicellular systems due to intercellular GJ blockade. The model is based on two assumptions for blocking-induced patterning: (i) the local concentrations of two small antagonistic morphogens diffusing through the GJs along the axial direction, together with that of an independent, uncoupled morphogen concentration along an orthogonal direction, constitute the instructive patterns that modulate the morphological outcomes, and (ii) the addition of an external agent partially blocks the intercellular GJs between neighboring cells and modifies thus the establishment of these patterns. As an illustrative example, we study how the different connectivity and morphogen patterns obtained in presence of a GJ blocker can give rise to novel head morphologies in regenerating planaria. We note that the ability of GJs to regulate the permeability of morphogens post-translationally suggests a mechanism by which different anatomies can be produced from the same genome without the modification of gene-regulatory networks. Conceptually, our model biosystem constitutes a reaction-diffusion information processing mechanism that allows reprogramming of biological morphologies through the external manipulation of the intercellular GJs and the resulting changes in instructive biochemical signals.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100, Burjassot, Spain.
| | - Michael Levin
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, MA, 02155-4243, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100, Burjassot, Spain
| |
Collapse
|
5
|
Cervera J, Ramirez P, Levin M, Mafe S. Community effects allow bioelectrical reprogramming of cell membrane potentials in multicellular aggregates: Model simulations. Phys Rev E 2020; 102:052412. [PMID: 33327213 DOI: 10.1103/physreve.102.052412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Bioelectrical patterns are established by spatiotemporal correlations of cell membrane potentials at the multicellular level, being crucial to development, regeneration, and tumorigenesis. We have conducted multicellular simulations on bioelectrical community effects and intercellular coupling in multicellular aggregates. The simulations aim at establishing under which conditions a local heterogeneity consisting of a small patch of cells can be stabilized against a large aggregate of surrounding identical cells which are in a different bioelectrical state. In this way, instructive bioelectrical information can be persistently encoded in spatiotemporal patterns of separated domains with different cell polarization states. The multicellular community effects obtained are regulated both at the single-cell and intercellular levels, and emerge from a delicate balance between the degrees of intercellular coupling in: (i) the small patch, (ii) the surrounding bulk, and (iii) the interface that separates these two regions. The model is experimentally motivated and consists of two generic voltage-gated ion channels that attempt to establish the depolarized and polarized cell states together with coupling conductances whose individual and intercellular different states permit a dynamic multicellular connectivity. The simulations suggest that community effects may allow the reprogramming of single-cell bioelectrical states, in agreement with recent experimental data. A better understanding of the resulting electrical regionalization can assist the electroceutical correction of abnormally depolarized regions initiated in the bulk of normal tissues as well as suggest new biophysical mechanisms for the establishment of target patterns in multicellular engineering.
Collapse
Affiliation(s)
- Javier Cervera
- Departamento Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| | - Patricio Ramirez
- Departamento Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, Massachusetts 02155-4243, USA
| | - Salvador Mafe
- Departamento Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
6
|
Cervera J, Pai VP, Levin M, Mafe S. From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: Electrical potentials as distributed controllers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:39-53. [PMID: 31255702 DOI: 10.1016/j.pbiomolbio.2019.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022]
Abstract
Endogenous bioelectric patterns within tissues are an important driver of morphogenesis and a tractable component of a number of disease states. Developing system-level understanding of the dynamics by which non-neural bioelectric circuits regulate complex downstream cascades is a key step towards both, an evolutionary understanding of ion channel genes, and novel strategies in regenerative medicine. An important capability gap is deriving rational modulation strategies targeting individual cells' bioelectric states to achieve global (tissue- or organ-level) outcomes. Here, we develop an ion channel-based model that describes multicellular states on the basis of spatio-temporal patterns of electrical potentials in aggregates of non-excitable cells. The model is of biological interest because modern techniques allow to associate bioelectrical signals with specific ion channel proteins in the cell membrane that are central to embryogenesis, regeneration, and tumorigenesis. As a complementary approach to the usual biochemical description, we have studied four biophysical questions: (i) how can single-cell bioelectrical states be established; (ii) how can a change in the cell potential caused by a transient perturbation of the cell state be maintained after the stimulus is gone (bioelectrical memory); (iii) how can a single-cell contribute to the control of multicellular ensembles based on the spatio-temporal pattern of electrical potentials; and (iv) how can oscillatory patterns arise from the single-cell bioelectrical dynamics. Experimentally, endogenous bioelectric gradients have emerged as instructive agents for morphogenetic processes. In this context, the simulations can guide new procedures that may allow a distributed control of the multicellular ensemble.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Universitat de València, E-46100, Burjassot, Spain.
| | - Vaibhav P Pai
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, MA, 02155-4243, USA
| | - Michael Levin
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, MA, 02155-4243, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Universitat de València, E-46100, Burjassot, Spain
| |
Collapse
|
7
|
Cervera J, Manzanares JA, Mafe S, Levin M. Synchronization of Bioelectric Oscillations in Networks of Nonexcitable Cells: From Single-Cell to Multicellular States. J Phys Chem B 2019; 123:3924-3934. [PMID: 31003574 DOI: 10.1021/acs.jpcb.9b01717] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological networks use collective oscillations for information processing tasks. In particular, oscillatory membrane potentials have been observed in nonexcitable cells and bacterial communities where specific ion channel proteins contribute to the bioelectric coordination of large populations. We aim at describing theoretically the oscillatory spatiotemporal patterns that emerge at the multicellular level from the single-cell bioelectric dynamics. To this end, we focus on two key questions: (i) What single-cell properties are relevant to multicellular behavior? (ii) What properties defined at the multicellular level can allow an external control of the bioelectric dynamics? In particular, we explore the interplay between transcriptional and translational dynamics and membrane potential dynamics in a model multicellular ensemble, describe the spatiotemporal patterns that arise when the average electric potential allows groups of cells to act as a coordinated multicellular patch, and characterize the resulting synchronization phenomena. The simulations concern bioelectric networks and collective communication across different scales based on oscillatory and synchronization phenomena, thus shedding light on the physiological dynamics of a wide range of endogenous contexts across embryogenesis and regeneration.
Collapse
Affiliation(s)
- Javier Cervera
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - José Antonio Manzanares
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Salvador Mafe
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology , Tufts University Medford , Massachusetts 02155-4243 , United States
| |
Collapse
|
8
|
Churchill CDM, Winter P, Tuszynski JA, Levin M. EDEn-Electroceutical Design Environment: Ion Channel Tissue Expression Database with Small Molecule Modulators. iScience 2019; 11:42-56. [PMID: 30590250 PMCID: PMC6308252 DOI: 10.1016/j.isci.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
The emerging field of bioelectricity has revealed numerous new roles for ion channels beyond the nervous system, which can be exploited for applications in regenerative medicine. Developing such biomedical interventions for birth defects, cancer, traumatic injury, and bioengineering first requires knowledge of ion channel targets expressed in tissues of interest. This information can then be used to select combinations of small molecule inhibitors and/or activators that manipulate the bioelectric state. Here, we provide an overview of electroceutical design environment (EDEn), the first bioinformatic platform that facilitates the design of such therapeutic strategies. This database includes information on ion channels and ion pumps, linked to known chemical modulators and their properties. The database also provides information about the expression levels of the ion channels in over 100 tissue types. The graphical interface allows the user to readily identify chemical entities that can alter the electrical properties of target cells and tissues.
Collapse
Affiliation(s)
| | - Philip Winter
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA.
| |
Collapse
|
9
|
Cervera J, Manzanares JA, Mafe S. Cell-cell bioelectrical interactions and local heterogeneities in genetic networks: a model for the stabilization of single-cell states and multicellular oscillations. Phys Chem Chem Phys 2019; 20:9343-9354. [PMID: 29564429 DOI: 10.1039/c8cp00648b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic networks operate in the presence of local heterogeneities in single-cell transcription and translation rates. Bioelectrical networks and spatio-temporal maps of cell electric potentials can influence multicellular ensembles. Could cell-cell bioelectrical interactions mediated by intercellular gap junctions contribute to the stabilization of multicellular states against local genetic heterogeneities? We theoretically analyze this question on the basis of two well-established experimental facts: (i) the membrane potential is a reliable read-out of the single-cell electrical state and (ii) when the cells are coupled together, their individual cell potentials can be influenced by ensemble-averaged electrical potentials. We propose a minimal biophysical model for the coupling between genetic and bioelectrical networks that associates the local changes occurring in the transcription and translation rates of an ion channel protein with abnormally low (depolarized) cell potentials. We then analyze the conditions under which the depolarization of a small region (patch) in a multicellular ensemble can be reverted by its bioelectrical coupling with the (normally polarized) neighboring cells. We show also that the coupling between genetic and bioelectric networks of non-excitable cells, modulated by average electric potentials at the multicellular ensemble level, can produce oscillatory phenomena. The simulations show the importance of single-cell potentials characteristic of polarized and depolarized states, the relative sizes of the abnormally polarized patch and the rest of the normally polarized ensemble, and intercellular coupling.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| | - José A Manzanares
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| | - Salvador Mafe
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
10
|
Cervera J, Meseguer S, Mafe S. Intercellular Connectivity and Multicellular Bioelectric Oscillations in Nonexcitable Cells: A Biophysical Model. ACS OMEGA 2018; 3:13567-13575. [PMID: 30411043 PMCID: PMC6217649 DOI: 10.1021/acsomega.8b01514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 05/28/2023]
Abstract
Bioelectricity is emerging as a crucial mechanism for signal transmission and processing from the single-cell level to multicellular domains. We explore theoretically the oscillatory dynamics that result from the coupling between the genetic and bioelectric descriptions of nonexcitable cells in multicellular ensembles, connecting the genetic prepatterns defined over the ensemble with the resulting spatio-temporal map of cell potentials. These prepatterns assume the existence of a small patch in the ensemble with locally low values of the genetic rate constants that produce a specific ion channel protein whose conductance promotes the cell-polarized state (inward-rectifying channel). In this way, the short-range interactions of the cells within the patch favor the depolarized membrane potential state, whereas the long-range interaction of the patch with the rest of the ensemble promotes the polarized state. The coupling between the local and long-range bioelectric signals allows a binary control of the patch membrane potentials, and alternating cell polarization and depolarization states can be maintained for optimal windows of the number of cells and the intercellular connectivity in the patch. The oscillatory phenomena emerge when the feedback between the single-cell bioelectric and genetic dynamics is coupled at the multicellular level. In this way, the intercellular connectivity acts as a regulatory mechanism for the bioelectrical oscillations. The simulation results are qualitatively discussed in the context of recent experimental studies.
Collapse
Affiliation(s)
- Javier Cervera
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| | - Salvador Meseguer
- Laboratory
of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Salvador Mafe
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
11
|
Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach. Bioelectrochemistry 2018; 123:45-61. [DOI: 10.1016/j.bioelechem.2018.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
12
|
Lemcke H, David R. Potential mechanisms of microRNA mobility. Traffic 2018; 19:910-917. [PMID: 30058163 DOI: 10.1111/tra.12606] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
Abstract
microRNAs (miRNAs) are important epigenetic modulators of gene expression that control cellular physiology as well as tissue homeostasis, and development. In addition to the temporal aspects of miRNA-mediated gene regulation, the intracellular localization of miRNA is crucial for its silencing activity. Recent studies indicated that miRNA is even translocated between cells via gap junctional cell-cell contacts, allowing spatiotemporal modulation of gene expression within multicellular systems. Although non coding RNA remains a focus of intense research, studies regarding the intra-and intercellular mobility of small RNAs are still largely missing. Emerging data from experimental and computational work suggest the involvement of transport mechanisms governing proper localization of miRNA in single cells and cellular syncytia. Based on these data, we discuss a model of miRNA translocation that could help to address the spatial aspects of miRNA function and the impact of miRNA molecules on the intercellular signaling network.
Collapse
Affiliation(s)
- Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
13
|
Zhdanov VP. mRNA function after intracellular delivery and release. Biosystems 2018; 165:52-56. [PMID: 29331630 DOI: 10.1016/j.biosystems.2018.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/31/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Nanocarrier-mediated mRNA delivery and release into the cells with subsequent translation to protein is of interest in the context of the development of a new generation of drugs. In particular, this protein can play a role of a transcription factor and be used as a tool to regulate temporarily the genetic networks. The corresponding transient kinetics of gene expression are expected to depend on the mechanism and duration of mRNA release. Assuming the release to be rapid on the time scale of other steps, the author shows theoretically the mRNA-related transient features of gene expression occurring in stable, bistable, and oscillatory regimes in a single cell. Qualitatively, the results obtained are found to be fairly similar to those reported earlier for the situation when the release is slow. Thus, the features of the transient kinetics under consideration appear to be less sensitive to the duration of mRNA release compared to what one might expect.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|