1
|
Aladawy AI, Elnakib M, Fattah MA, Taha AG, El Saftawy EA. Impact of -20 C° cryopreservation on serum factors from schistosomiasis patients at different storage durations: insights into serum bio-banking. J Parasit Dis 2025; 49:162-172. [PMID: 39975625 PMCID: PMC11832841 DOI: 10.1007/s12639-024-01734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/25/2024] [Indexed: 02/21/2025] Open
Abstract
It is indefinite for research applications if prolonged freeze-stored serum from Schistosoma-infected patients is useful. We assessed - 20 °C freezing as a rapid and inexpensive method. A longitudinal cohort study with staggered follow-up periods evaluated the impact of cryopreservation on serum residues from 24 Schistosoma-infected Egyptian patients. Fresh serums were collected in March 2022 and assessed by the indirect haemagglutination test for Schistosoma immunoglobulin titrations and calorimetric assays for ALT, AST, total serum protein, Na+, K+, Ca++, and Mg++ (baseline values). Sera were then frozen and categorized into 4 groups (6 patients each) according to freezing duration; 3 months (group-1), 6 months (group-2), 9 months (group-3), and 12 months (group-4). Re-evaluation was performed on the Schistosoma immunoglobulin recovery rates and all other serum chemical factors. Baseline assessment showed increased mean values of Schistosoma immunoglobulins, ALT, AST, and proteins; yet, Ca++, Na+, and K+ were reduced. Mg++ showed normal values. Compared with the baselines, - 20 °C freezing showed significant deviations and increased percentage change in Schistosoma immunoglobulin titers, ALT, AST, K+, and Na+ at different time intervals of archiving (p-value ≤ 0.05). Evaluating serum factors interactions post-thawing revealed that AST correlated positively with ALT and Mg++ sera levels whereas Ca++ negatively correlated with Na+ and Schistosoma antibody titer. Analyzing baselines revealed that the parasite alters levels of immunoglobulin, ALT, AST, proteins, Ca++, Na+, and K+. - 20 °C cryopreservation did not guarantee the stability of all tK+hese serum parameters. In addition, some serum factors appeared to interact together. Assessing the efficacy of - 20 °C freezing on the next-generation sequencing is recommended.
Collapse
Affiliation(s)
- Azza Ibrahim Aladawy
- Medical Parasitology, Faculty of Medicine, Cairo University, Al Giza, Egypt
- Medical Parasitology Armed Forces College of Medicine, Cairo, Egypt
| | - Mostafa Elnakib
- Medical Microbiology and Immunology Department, Military Medical Academy, Cairo, Egypt
| | | | - Ahmed Gad Taha
- Medical Microbiology and Immunology Department, Military Medical Academy, Cairo, Egypt
- Head of the Microbiology Department, Armed Forces Laboratories for Medical Research and Blood Bank, Cairo, Egypt
| | - Enas Aly El Saftawy
- Medical Parasitology, Faculty of Medicine, Cairo University, Al Giza, Egypt
- Medical Parasitology Armed Forces College of Medicine, Cairo, Egypt
| |
Collapse
|
2
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Awad MN, Brown SJ, Abraham AN, Sezer D, Han Q, Wang X, Le TC, Elbourne A, Bryant G, Greaves TL, Bryant SJ. Biophysical Characterization and Cryopreservation of Mammalian Cells Using Ionic Liquids. J Phys Chem B 2024; 128:2504-2515. [PMID: 38416751 DOI: 10.1021/acs.jpcb.3c06797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Ionic liquids (ILs) are a diverse class of solvents which can be selected for task-specific properties, making them attractive alternatives to traditional solvents. To tailor ILs for specific biological applications, it is necessary to understand the structure-property relationships of ILs and their interactions with cells. Here, a selection of carboxylate anion-based ILs were investigated as cryoprotectants, which are compounds added to cells before freezing to mitigate lethal freezing damage. The cytotoxicity, cell permeability, thermal behavior, and cryoprotective efficacy of the ILs were assessed with two model mammalian cell lines. We found that the biophysical interactions, including permeability of the ILs, were influenced by considering the IL pair together, rather than as single species acting independently. All of the ILs tested had high cytotoxicity, but ethylammonium acetate demonstrated good cryoprotective efficacy for both cell types tested. These results demonstrate that despite toxicity, ILs may be suitable for certain biological applications. It also demonstrates that more research is required to understand the contribution of ion pairs to structure-property relationships and that knowing the behavior of a single ionic species will not necessarily predict its behavior as part of an IL.
Collapse
Affiliation(s)
- Miyah N Awad
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Stuart J Brown
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Amanda N Abraham
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, Victoria 3001, Australia
| | - Dilek Sezer
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Qi Han
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoying Wang
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- Digital Services, Deakin University, Melbourne, Victoria 3008, Australia
| | - Tu C Le
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Takekiyo T, Yamada S, Uto T, Nakayama M, Hirata T, Ishizaki T, Kuroda K, Yoshimura Y. Protein Cryoprotectant Ability of the Aqueous Zwitterionic Solution. J Phys Chem B 2024; 128:526-535. [PMID: 38176060 DOI: 10.1021/acs.jpcb.3c05614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Protein cryopreservation is important for the long-term storage of unstable proteins. Recently, we found that N-acetylglucosaminyltransferase-V (GnT-V) can be cryopreserved in a deep freezer without temperature control using a dilute binary aqueous solution of 3-(1-(2-(2-methoxyethoxy)ethyl)imidazol-3-io)butane-1-carboxylate (OE2imC3C) [10 wt %, mole fraction of solute (x) = 7.75 × 10-3], an artificial zwitterion. However, it is unclear which solvent properties are required in these media to preserve unstable proteins, such as GnT-V. In this study, we investigated the melting phenomena and solution structure of dilute binary aqueous OE2imC3C solutions [x = 0-2.96 × 10-2 (0-30 wt %)] using differential scanning calorimetry (DSC) and Raman and Fourier transform infrared (FTIR) spectroscopies combined with molecular dynamics (MD) simulation to compare the cryoprotectant ability of OE2imC3C with two general cryoprotectants (CPAs), glycerol and dimethyl sulfoxide. DSC results indicated that aqueous OE2imC3C solutions can be melted at lower temperatures with less energy than the control CPA solution, with increasing x, primarily due to OE2imC3C having a higher content of unfrozen water molecules. Moreover, Raman and FTIR results showed that the high content of unfrozen water molecules in aqueous OE2imC3C solutions was due to the hydration around the ionic parts (the COO- group and imidazolium ring) and the OCH2CH2O segment. In addition, the MD simulation results showed that there were fewer structured water molecules around the OCH2CH2O segment than the hydration water molecules around the ionic parts. These solvent properties suggest that dilute aqueous OE2imC3C solutions are effective in preventing freezing, even in a deep freezer. Therefore, this medium has the potential to act as a novel cryoprotectant for proteins in biotechnology and biomedical fields.
Collapse
Affiliation(s)
- Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
| | - Shuto Yamada
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
| | - Takuya Uto
- Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen Kibanadai, Miyazaki 889-2192, Japan
| | - Masaharu Nakayama
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
| | - Tetsuya Hirata
- Department of Biochemistry, Duke University, School of Medicine, Durham, North Carolina 27710, United States
| | - Takeru Ishizaki
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kosuke Kuroda
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
5
|
Lomba L, García CB, Benito L, Sangüesa E, Santander S, Zuriaga E. Advances in Cryopreservatives: Exploring Safer Alternatives. ACS Biomater Sci Eng 2024; 10:178-190. [PMID: 38141007 DOI: 10.1021/acsbiomaterials.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Cryopreservation of cells, tissues, and organs is widely used in the biomedical and research world. There are different cryopreservatives that are used for this process; however, many of them, such as DMSO, are used despite the problems they present, mainly due to the toxicity it presents to certain types of samples. The aim of this Review is to highlight the different types of substances used in the cryopreservation process. It has been shown that some of these substances are well-known, as in the case of the families of alcohols, sugars, sulfoxides, etc. However, in recent years, other compounds have appeared, such as ionic liquids, deep eutectic solvents, or certain polymers, which open the door to new cryopreservation methods and are also less toxic to frozen samples.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Cristina B García
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Lucía Benito
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Estela Sangüesa
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Sonia Santander
- Faculty of Health and Sports Sciences, University of Zaragoza, Campus of Huesca, 22002 Huesca, Spain
| | - Estefanía Zuriaga
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| |
Collapse
|
6
|
Uniyal P, Das S, Panwar S, Kukreti N, Nainwal P, Bhatia R. A Comprehensive Review on Imperative Role of Ionic Liquids in Pharmaceutical Sciences. Curr Drug Deliv 2024; 21:1197-1210. [PMID: 37815183 DOI: 10.2174/0115672018255191230921035859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023]
Abstract
Ionic liquids (ILs) are poorly-coordinated ionic salts that can exist as a liquid at room temperatures (or <100 °C). ILs are also referred to as "designer solvents" because so many of them have been created to solve particular synthetic issues. ILs are regarded as "green solvents" because they have several distinctive qualities, including better ionic conduction, recyclability, improved solvation ability, low volatility, and thermal stability. These have been at the forefront of the most innovative fields of science and technology during the past few years. ILs may be employed in new drug formulation development and drug design in the field of pharmacy for various functions such as improvement of solubility, targeted drug delivery, stabilizer, permeability enhancer, or improvement of bioavailability in the development of pharmaceutical or vaccine dosage formulations. Ionic liquids have become a key component in various areas such as synthetic and catalytic chemistry, extraction, analytics, biotechnology, etc., due to their superior abilities along with highly modifiable potential. This study concentrates on the usage of ILs in various pharmaceutical applications enlisting their numerous purposes from the delivery of drugs to pharmaceutical synthesis. To better comprehend cuttingedge technologies in IL-based drug delivery systems, highly focused mechanistic studies regarding the synthesis/preparation of ILs and their biocompatibility along with the ecotoxicological and biological effects need to be studied. The use of IL techniques can address key issues regarding pharmaceutical preparations such as lower solubility and bioavailability which plays a key role in the lack of effectiveness of significant commercially available drugs.
Collapse
Affiliation(s)
- Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Shibam Das
- Department of pharmaceutical technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Surbhi Panwar
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab, India
| |
Collapse
|
7
|
Bakulina OD, Ivanov MY, Prikhod’ko SA, Adonin NY, Fedin MV. Effects of Zwitterions on Structural Anomalies in Ionic Liquid Glasses Studied by EPR. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2164. [PMID: 37570482 PMCID: PMC10420841 DOI: 10.3390/nano13152164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Ionic liquids (ILs) form a variety of nanostructures due to their amphiphilic nature. Recently, unusual structural phenomena have been found in glassy ILs near their glass transition temperatures; however, in all studied cases, IL cations and anions were in the form of separate moieties. In this work, we investigate for the first time such structural anomalies in zwitterionic IL glasses (ZILs), where the cation and anion are bound in a single molecule. Such binding reasonably restricts mutual diffusion of cations and anions, leading to modification of nano-ordering and character of structural anomalies in these glassy nanomaterials, as has been investigated using Electron Paramagnetic Resonance (EPR) spectroscopy. In particular, the occurrence of structural anomalies in ZIL glasses was revealed, and their characteristic temperatures were found to be higher compared to common ILs of a similar structure. Altogether, this work broadens the scope of structural anomalies in ionic liquid glasses and indicates new routes to tune their properties.
Collapse
Affiliation(s)
- Olga D. Bakulina
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia;
- Physics Department, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Mikhail Yu. Ivanov
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia;
- Physics Department, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Sergey A. Prikhod’ko
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Nicolay Yu. Adonin
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia;
- Physics Department, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Han Q, El Mohamad M, Brown S, Zhai J, Rosado CJ, Shen Y, Blanch EW, Drummond CJ, Greaves TL. Small angle X-ray scattering investigation of ionic liquid effect on the aggregation behavior of globular proteins. J Colloid Interface Sci 2023; 648:376-388. [PMID: 37302221 DOI: 10.1016/j.jcis.2023.05.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Globular proteins are well-folded model proteins, where ions can substantially influence their structure and aggregation. Ionic liquids (ILs) are salts in the liquid state with versatile ion combinations. Understanding the IL effect on protein behavior remains a major challenge. Here, we employed small angle X-ray scattering to investigate the effect of aqueous ILs on the structure and aggregation of globular proteins, namely, hen egg white lysozyme (Lys), human lysozyme (HLys), myoglobin (Mb), β-lactoglobulin (βLg), trypsin (Tryp) and superfolder green fluorescent protein (sfGFP). The ILs contain ammonium-based cations paired with the mesylate, acetate or nitrate anion. Results showed that only Lys was monomeric, whereas the other proteins formed small or large aggregates in buffer. Solutions with over 17 mol% IL resulted in significant changes in the protein structure and aggregation. The Lys structure was expanded at 1 mol% but compact at 17 mol% with structural changes in loop regions. HLys formed small aggregates, with the IL effect similar to Lys. Mb and βLg mostly had distinct monomer and dimer distributions depending on IL type and IL concentration. Complex aggregation was noted for Tryp and sfGFP. While the anion had the largest ion effect, changing the cation also induced the structural expansion and protein aggregation.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Mohamad El Mohamad
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Stuart Brown
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Carlos J Rosado
- Department of Diabetes, Central Clinical School, Monash University, VIC 3004, Australia; Department of Biochemistry, Monash University, VIC 3800, Australia
| | - Yi Shen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ewan W Blanch
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
9
|
Cytochrome c in cancer therapy and prognosis. Biosci Rep 2022; 42:232225. [PMID: 36479932 PMCID: PMC9780037 DOI: 10.1042/bsr20222171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Cytochrome c (cyt c) is an electron transporter of the mitochondrial respiratory chain. Upon permeabilization of the mitochondrial outer membrane, cyt c is released into the cytoplasm, where it triggers the intrinsic pathway of apoptosis. Cytoplasmic cyt c can further reach the bloodstream. Apoptosis inhibition is one of the hallmarks of cancer and its induction in tumors is a widely used therapeutic approach. Apoptosis inhibition and induction correlate with decreased and increased serum levels of cyt c, respectively. The quantification of cyt c in the serum is useful in the monitoring of patient response to chemotherapy, with potential prognosis value. Several highly sensitive biosensors have been developed for the quantification of cyt c levels in human serum. Moreover, the delivery of exogenous cyt c to the cytoplasm of cancer cells is an effective approach for inducing their apoptosis. Similarly, several protein-based and nanoparticle-based systems have been developed for the therapeutic delivery of cyt c to cancer cells. As such, cyt c is a human protein with promising value in cancer prognosis and therapy. In addition, its thermal stability can be extended through PEGylation and ionic liquid storage. These processes could contribute to enhancing its therapeutic exploitation in clinical facilities with limited refrigeration conditions. Here, I discuss these research lines and how their timely conjunction can advance cancer therapy and prognosis.
Collapse
|
10
|
Characterising a Protic Ionic Liquid Library with Applied Machine Learning Algorithms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Guncheva M. Role of ionic liquids on stabilization of therapeutic proteins and model proteins. Protein J 2022; 41:369-380. [PMID: 35661292 DOI: 10.1007/s10930-022-10058-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) exhibit potential as excipients to stabilize proteins in solutions. This mini-review is not a detailed reference book on ILs, rather a brief overview of the main achievements published in the literature on their effect on protein aggregation, unfolding, structural and thermal stability, and activity. The main focus of the manuscript is three widely studied groups of ionic liquids: imidazolium-, cholinium- and alkylammonium-based and their effect on the model and therapeutic proteins.
Collapse
Affiliation(s)
- Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 9, 1113, Sofia, Bulgaria.
| |
Collapse
|
12
|
Protic Ionic Liquid Cation Alkyl Chain Length Effect on Lysozyme Structure. Molecules 2022; 27:molecules27030984. [PMID: 35164252 PMCID: PMC8839406 DOI: 10.3390/molecules27030984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Solvents that stabilize protein structures can improve and expand their biochemical applications, particularly with the growing interest in biocatalytic-based processes. Aiming to select novel solvents for protein stabilization, we explored the effect of alkylammonium nitrate protic ionic liquids (PILs)-water mixtures with increasing cation alkyl chain length on lysozyme conformational stability. Four PILs were studied, that is, ethylammonium nitrate (EAN), butylammonium nitrate (BAN), hexylammonium nitrate (HAN), and octylammonium nitrate (OAN). The surface tension, viscosity, and density of PIL-water mixtures at low to high concentrations were firstly determined, which showed that an increasing cation alkyl chain length caused a decrease in the surface tension and density as well as an increase in viscosity for all PIL solutions. Small-angle X-ray scattering (SAXS) was used to investigate the liquid nanostructure of the PIL solutions, as well as the overall size, conformational flexibility and changes to lysozyme structure. The concentrated PILs with longer alkyl chain lengths, i.e., over 10 mol% butyl-, 5 mol% hexyl- and 1 mol% octylammonium cations, possessed liquid nanostructures. This detrimentally interfered with solvent subtraction, and the more structured PIL solutions prevented quantitative SAXS analysis of lysozyme structure. The radius of gyration (Rg) of lysozyme in the less structured aqueous PIL solutions showed little change with up to 10 mol% of PIL. Kratky plots, SREFLEX models, and FTIR data showed that the protein conformation was maintained at a low PIL concentration of 1 mol% and lower when compared with the buffer solution. However, 50 mol% EAN and 5 mol% HAN significantly increased the Rg of lysozyme, indicating unfolding and aggregation of lysozyme. The hydrophobic interaction and liquid nanostructure resulting from the increased cation alkyl chain length in HAN likely becomes critical. The impact of HAN and OAN, particularly at high concentrations, on lysozyme structure was further revealed by FTIR. This work highlights the negative effect of a long alkyl chain length and high concentration of PILs on lysozyme structural stability.
Collapse
|
13
|
Ivanov MY, Surovtsev NV, Fedin MV. Ionic liquid glasses: properties and applications. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Han Q, Binns J, Zhai J, Guo X, Ryan TM, Drummond CJ, Greaves TL. Insights on lysozyme aggregation in protic ionic liquid solvents by using small angle X-ray scattering and high throughput screening. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
|
16
|
Ivanov MY, Bakulina OD, Alimov DV, Prikhod'ko SA, Veber SL, Pylaeva S, Adonin NY, Fedin MV. Inherent heterogeneities and nanostructural anomalies in organic glasses revealed by EPR. NANOSCALE ADVANCES 2021; 3:4973-4978. [PMID: 36132341 PMCID: PMC9416887 DOI: 10.1039/d1na00452b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 06/15/2023]
Abstract
Intriguing heterogeneities and nanostructural reorganizations of glassy ionic liquids (ILs) have recently been found using electron paramagnetic resonance (EPR) spectroscopy. Alkyl chains of IL cations play the key role in such phenomena and govern the anomalous temperature dependence of local density and molecular mobility. In this paper we evidence and study similar manifestations in a variety of common non-IL glasses, which also contain molecules with alkyl chains. A series of phthalates clearly demonstrates very similar behavior to imidazolium-based ILs with the same length of alkyl chain. Glasses of alkyl alcohols and alkyl benzenes show only some similarities to the corresponding ILs, mainly due to a lower glass transition temperature hindering the development of the anomaly. Therefore, we demonstrate the general nature and broad scope of nanoscale structural anomalies in organic glasses based on alkyl-chain compounds. The 'roadmap' for their occurrence is provided, which aids in understanding and future applications of these anomalous nanoheterogeneities.
Collapse
Affiliation(s)
- Mikhail Yu Ivanov
- International Tomography Center SB RAS, Institutskaya Street 3a 630090 Novosibirsk Russia
| | - Olga D Bakulina
- International Tomography Center SB RAS, Institutskaya Street 3a 630090 Novosibirsk Russia
- Novosibirsk State University Pirogova Street 2 630090 Novosibirsk Russia
| | - Dmitriy V Alimov
- Novosibirsk State University Pirogova Street 2 630090 Novosibirsk Russia
| | - Sergey A Prikhod'ko
- Boreskov Institute of Catalysis SB RAS Lavrentiev Avenue 5 630090 Novosibirsk Russia
| | - Sergey L Veber
- International Tomography Center SB RAS, Institutskaya Street 3a 630090 Novosibirsk Russia
| | - Svetlana Pylaeva
- Universität Paderborn Warburger Str. 100 33098 Paderborn Germany
| | - Nicolay Yu Adonin
- Boreskov Institute of Catalysis SB RAS Lavrentiev Avenue 5 630090 Novosibirsk Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya Street 3a 630090 Novosibirsk Russia
| |
Collapse
|
17
|
Behera K, Wani FA, Bhat AR, Juneja S, Banjare MK, Pandey S, Patel R. Behavior of lysozyme within ionic liquid-in-water microemulsions. J Mol Liq 2021; 326:115350. [DOI: https:/doi.org/10.1016/j.molliq.2021.115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
18
|
Behera K, Wani FA, Bhat AR, Juneja S, Banjare MK, Pandey S, Patel R. Behavior of lysozyme within ionic liquid-in-water microemulsions. J Mol Liq 2021; 326:115350. [DOI: 10.1016/j.molliq.2021.115350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Han Q, Ryan TM, Rosado CJ, Drummond CJ, Greaves TL. Effect of ionic liquids on the fluorescence properties and aggregation of superfolder green fluorescence protein. J Colloid Interface Sci 2021; 591:96-105. [PMID: 33596505 DOI: 10.1016/j.jcis.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Proteins generally tend to aggregate with less desirable properties in numerous solvents, which is one of the major challenges in the development of solvents for functional proteins. This work aims to utilize fluorescence spectroscopy and small angle X-ray scattering (SAXS) to understand the effects of ionic liquids (ILs) on the fluorescence and aggregation behavior of superfolder green fluorescent protein (sfGFP). The studied ILs consisted of four different anions coupled with primary, tertiary and quaternary ammonium cations. The results show that the chromophore fluorescence was generally maintained in 1 mol% IL-water mixtures, then decreased with increasing IL concentration. We primarily employed the pseudo-radius of gyration (pseudo-Rg) to evaluate sfGFP aggregation. The sfGFP was less aggregated with nitrate-based ILs compared to in buffer, and more aggregated in the mesylate-based ILs. Further, we show that the polyol additives of glycerol and glucose in IL-water mixtures slightly decreased the sfGFP propensity to aggregate. Size-exclusion chromatography (SEC)-SAXS was used to characterize the monomeric sfGFP in ethylammonium nitrate (EAN) and triethylammonium mesylate (TEAMs)-water mixtures. The presence of 1 mol% TEAMs maintained the sfGFP fluorescence, promoted the compact structure, but slightly increased the amount of large aggregates, which contrasted with that of EAN.
Collapse
Affiliation(s)
- Qi Han
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Timothy M Ryan
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Carlos J Rosado
- Department of Diabetes, Central Clinical School, Monash University, VIC 3004, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
20
|
Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnol Adv 2021; 51:107702. [PMID: 33515671 DOI: 10.1016/j.biotechadv.2021.107702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Biocatalysis has found enormous applications in sorts of fields as an alternative to chemical catalysis. In the pursue of green and sustainable chemistry, ionic liquids (ILs) have been considered as promising reaction media for biocatalysis, owing to their unique characteristics, such as nonvolatility, inflammability and tunable properties as regards polarity and water miscibility behavior, compared to organic solvents. In recent years, great developments have been achieved in respects to biocatalysis in ILs, especially for preparing various chemicals. This review tends to give illustrative examples with a focus on representative chemicals production by biocatalyst in ILs and elucidate the possible mechanism in such systems. It also discusses how to regulate the catalytic efficiency from several aspects and finally provides an outlook on the opportunities to broaden biocatalysis in ILs.
Collapse
|
21
|
Zhai J, Sarkar S, Tran N, Pandiancherri S, Greaves TL, Drummond CJ. Tuning Nanostructured Lyotropic Liquid Crystalline Mesophases in Lipid Nanoparticles with Protic Ionic Liquids. J Phys Chem Lett 2021; 12:399-404. [PMID: 33356288 DOI: 10.1021/acs.jpclett.0c03318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We herein report 13 protic ionic liquids (PILs) as tunable solvation media to regulate the internal lyotropic liquid crystalline mesophase of monoolein-based nanoparticles. A range of nanostructures, including inverse bicontinuous cubic, inverse hexagonal, and sponge/lamellar mesophases, were produced and verified by synchrotron small-angle X-ray scattering. Notably, manipulating the cation/anion structures of the PILs can alter the monoolein packing behavior and cause a sequential phase transition (hexagonal → cubic → lamellar) in the nanoparticles. The solvent channels inside the nanoparticles were enlarged up to 40% under certain PIL-water conditions, making these materials prospective for encapsulation of large molecules. Finally, a freeze-drying study demonstrated the ability of PILs to preserve nanostructure upon reconstitution of the nanoparticles compared to that in pure water. This study opens a new route for fine-tuning lyotropic liquid crystalline structures using PILs, which circumvents issues encountered using conventional salts.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| | - Sampa Sarkar
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| | - Shveta Pandiancherri
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| |
Collapse
|
22
|
Garajová K, Sedláková D, Berta M, Gazova Z, Sedlák E. Destabilization effect of imidazolium cation-Hofmeister anion salts on cytochrome c. Int J Biol Macromol 2020; 164:3808-3813. [DOI: 10.1016/j.ijbiomac.2020.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023]
|
23
|
Bakulina OD, Ivanov MY, Prikhod'ko SA, Pylaeva S, Zaytseva IV, Surovtsev NV, Adonin NY, Fedin MV. Nanocage formation and structural anomalies in imidazolium ionic liquid glasses governed by alkyl chains of cations. NANOSCALE 2020; 12:19982-19991. [PMID: 32996529 DOI: 10.1039/d0nr06065h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intriguing nanostructuring anomalies have been recently observed in imidazolium ionic liquids (ILs) near their glass transition points, where local density around a nanocaged solute progressively grows up with temperature. Herewith, we for the first time demonstrate experimentally and theoretically, that these anomalies are governed by alkyl chains of cations and crucially depend on their length. Electron Paramagnetic Resonance (EPR) spectroscopy on a series of ILs [Cnmim]BF4 (n = 0-12) shows that only the chains with n = 3-10 favor anomaly. Moreover, remarkable even vs. odd n peculiarities were systematically observed. Finally, similar anomaly was for the first time observed for a non-IL glass of dibutyl phthalate, which structurally mimics cations of imidazolium ILs. Therefore, such anomalous density behavior in a glassy state nanocage goes far beyond ILs and proves to be a more general phenomenon, which can be structurally tuned and rationally adjusted for various potential applications in nanoscale materials.
Collapse
Affiliation(s)
- Olga D Bakulina
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Han Q, Smith KM, Darmanin C, Ryan TM, Drummond CJ, Greaves TL. Lysozyme conformational changes with ionic liquids: Spectroscopic, small angle x-ray scattering and crystallographic study. J Colloid Interface Sci 2020; 585:433-443. [PMID: 33109332 DOI: 10.1016/j.jcis.2020.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/19/2020] [Accepted: 10/07/2020] [Indexed: 01/14/2023]
Abstract
Solvents that support protein functionality are important for biochemical applications, and new solvents are required. Here we employ FTIR and fluorescence spectroscopies, small angle X-ray scattering (SAXS) and X-ray crystallography to understand conformational changes of lysozyme with ionic liquids (ILs) added. Spectroscopic techniques identified that the secondary structure of lysozyme was maintained at the lower IL concentrations of 1 and 5 mol%, though the Tryptophan environment was significantly altered with nitrate-based ILs present. SAXS experiments indicated that the radius of gyration of lysozyme increased with 1 mol% IL present, and then decreased with increasing IL concentrations. The tertiary structure, particularly the loop regions, changed as a function of IL concentration, and this depended on the IL type. The crystallographic structure of lysozyme with the IL of ethylammonium nitrate present confirmed the loop region was extended, and identified three specific binding sites with nitrate ions, and that the positively charged areas were IL sensitive regions. This work provides a detailed understanding of lysozyme conformational changes in the presence of ILs. This approach can be extended to other functionally-important proteins.
Collapse
Affiliation(s)
- Qi Han
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Kate M Smith
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Connie Darmanin
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, VIC 3086, Australia
| | - Timothy M Ryan
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
25
|
Srivastava R, Alam MS. The multi-spectroscopic approach on the interaction between rabbit serum albumin and cationic surfactant: Investigation on the formation and solubilization of the protein aggregation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118542. [PMID: 32502807 DOI: 10.1016/j.saa.2020.118542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/12/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The protein-surfactant interaction studies have great importance in the range of the application like cosmetics, food, pharmaceutical, detergent industries, and many more. In this study, we have studies protein (rabbit serum albumin, RSA) and a cationic surfactant (cetyltrimethylammonium bromide, CTAB) interaction at different physiological conditions (viz., pH, ionic strength, surfactants concentrations, protein concentration, and many more). They form the protein surfactant complexes. The interchange of electrostatic and hydrophobic force monitors the change in complexes. The three different pHs (below (4.0), above (7.0) and at (4.7) the isoelectric point of RSA) of the medium indicate the three different charges on the protein while surfactant is positive in charge. Critical micelle concentration (CMC) plays a significant role in protein-surfactant interaction. CTAB unfolds the protein at its specific concentration range afterward again; it starts refolded. RSA interacted, with the addition of the CTAB is characterized by many spectroscopic methods like UV-visible, fluorescence, fluorescence time-resolved, circular dichroism, and topographical changes monitored by the AFM. In fluorescence spectra, the blue shift shows the unfolding of RSA. The molecular docking indicates the binding energy of 5.8 kcal mol-1. The changes below and above the CMC is significant.
Collapse
Affiliation(s)
- Rachana Srivastava
- Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science & Technology Laboratory, Chennai 600020, India
| | - Md Sayem Alam
- Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science & Technology Laboratory, Chennai 600020, India; Chemical Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
26
|
Pabbathi A, Samanta A. On the Stability and Conformational Dynamics of Cytochrome c in Ammonium Ionic Liquids. J Phys Chem B 2020; 124:8132-8140. [PMID: 32830967 DOI: 10.1021/acs.jpcb.0c05633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Owing to their potential applications in the extraction, purification, and preservation of biomolecules and biocatalysis, ionic liquids (ILs) have gained great attention in biotechnology. Although it is known that the structure and dynamics of proteins in ILs depend on the nature of both proteins and ILs, the biophysical mechanism governing the protein-IL interaction, which determines the stability of proteins or the activity of an enzyme in these nonconventional media, is yet to be understood clearly. Herein, we study the effect of two ammonium ILs, triethylammonium dihydrogen phosphate (TEAP) and tributylammonium dihydrogen phosphate (TBAP), on the stability and conformational dynamics of cytochrome c (Cyt c) in its native and unfolded states, employing primarily the single molecule-based fluorescence correlation spectroscopy (FCS) technique. The results show that the native structure of Cyt c is not significantly altered by TEAP, but the tertiary structure is perturbed to a great extent by TBAP, which comprises a longer alkyl chain. Fluctuations of the fluorescence intensity of Alexa488 dye-labeled Cyt c in FCS measurements reveal conformational dynamics (67 ± 10 μs) in the native state of Cyt c that is accelerated in the presence of both ILs but not affected when Cyt c is in its unfolded state. The present findings demonstrate how the stability of this protein can be modulated by using ammonium ILs of different alkyl chain lengths.
Collapse
Affiliation(s)
- Ashok Pabbathi
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
27
|
Takekiyo T, Yamada N, Nakazawa CT, Amo T, Asano A, Yoshimura Y. Formation of α-synuclein aggregates in aqueous ethylammonium nitrate solutions. Biopolymers 2020; 111:e23352. [PMID: 32203628 DOI: 10.1002/bip.23352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/04/2023]
Abstract
The effect of adding ethylammonium nitrate (EAN), which is an ionic liquid (IL), on the aggregate formation of α-synuclein (α-Syn) in aqueous solution has been investigated. FTIR and Raman spectroscopy were used to investigate changes in the secondary structure of α-Syn and in the states of water molecules and EAN. The results presented here show that the addition of EAN to α-Syn causes the formation of an intermolecular β-sheet structure in the following manner: native disordered state → polyproline II (PPII)-helix → intermolecular β-sheet (α-Syn amyloid-like aggregates: α-SynA). Although cations and anions of EAN play roles in masking the charged side chains and PPII-helix-forming ability involved in the formation of α-SynA, water molecules are not directly related to its formation. We conclude that EAN-induced α-Syn amyloid-like aggregates form at hydrophobic associations in the middle of the molecules after masking the charged side chains at the N- and C-terminals of α-Syn.
Collapse
Affiliation(s)
- Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Natsuki Yamada
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Chikako T Nakazawa
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Taku Amo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Atsushi Asano
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| |
Collapse
|
28
|
Ivanov MY, Prikhod’ko SA, Adonin NY, Fedin MV. Structural Anomalies in Binary Mixtures of Ionic Liquid [Bmim]BF4 with Water Studied by EPR. J Phys Chem B 2019; 123:9956-9962. [DOI: 10.1021/acs.jpcb.9b08933] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mikhail Yu. Ivanov
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Sergey A. Prikhod’ko
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia
| | - Nicolay Yu. Adonin
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| |
Collapse
|
29
|
Takekiyo T, Miyazaki K, Watanabe Y, Uesugi Y, Tanaka S, Ishikawa Y, Yoshimura Y. Solubilization and recovery of heat-aggregated cytochrome c using alkylammonium nitrate. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Banjare MK, Behera K, Banjare RK, Sahu R, Sharma S, Pandey S, Satnami ML, Ghosh KK. Interaction of Ionic Liquid with Silver Nanoparticles: Potential Application in Induced Structural Changes of Globular Proteins. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:11088-11100. [DOI: 10.1021/acssuschemeng.8b06598] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Affiliation(s)
- Manoj Kumar Banjare
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Kamalakanta Behera
- Centre for Interdisciplinary
Research in Basic Sciences, JMI, Jamia Nagar, New Delhi 110 025, India
| | - Ramesh Kumar Banjare
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
- School of Biological and Chemical Science, MATS University, Raipur, Chhattisgarh 492001, India
| | - Reshma Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| | - Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| |
Collapse
|
31
|
Takekiyo T, Ishikawa Y, Yamaguchi E, Yamada N, Yoshimura Y. Dissolution of Amyloid Aggregates in Aqueous Ionic Liquid Solutions: A Case Study of Insulin Amyloid. Aust J Chem 2019. [DOI: 10.1071/ch18361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dissolution of amyloid aggregates with high β-sheet content is required for the correct refolding of ordered protein aggregates. The dissolution of bovine insulin amyloid aggregates in five different ionic liquids (ILs) is investigated. These were comprised of three 1-butyl-3-methylimidazolium ([bmim])-based ILs, containing either SCN−, NO3−, or Cl− anions, and two alkylammonium nitrate-based ILs, ethyl- and propylammonium nitrate (EAN and PAN). A broad IL concentration range (x=0–30mol-% IL) was analysed using FTIR spectroscopy combined with the Congo red assay. On the whole, the [bmim]-based ILs showed a higher dissolution ability than EAN and PAN for all concentrations of x. It is notable that the dissolution ability of dilute aqueous IL solutions (x<15) for insulin amyloid was different to that of concentrated aqueous IL solutions (x>15). The former condition for insulin amyloid may affect dissolution based on the denaturant effect of cations and anions in the ILs. The latter condition may affect this dissolution based on the hydrogen-bonding ability (α and β values) of the ILs, as described by the Kamlet–Taft parameters. Moreover, the difference between these α and β values (α–β) was found to be a good indicator of the dissolution ability of ILs for insulin amyloid aggregates in concentrated conditions above x=20 (α–β<0, strong dissolution ability; α–β>0, weak dissolution ability). These findings may assist the future design of aqueous IL-based dissolution agents for ordered aggregated proteins.
Collapse
|
32
|
Egorova KS, Ananikov VP. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
|
34
|
Zhao Q, Chu H, Zhao B, Liang Z, Zhang L, Zhang Y. Advances of ionic liquids-based methods for protein analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Dynamics of cytochrome c in surface active ionic liquid: A study of preferential interactions towards denaturation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Singh UK, Patel R. Dynamics of Ionic Liquid-Assisted Refolding of Denatured Cytochrome c: A Study of Preferential Interactions toward Renaturation. Mol Pharm 2018; 15:2684-2697. [PMID: 29767978 DOI: 10.1021/acs.molpharmaceut.8b00212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In vitro refolding of denatured protein and the influence of the alkyl chain on the refolding of a protein were tested using long chain imidazolium chloride salts, 1-methyl-3-octylimidazolium chloride [C8mim][Cl], and 1-decyl-3-methylimidazolium chloride [C10mim][Cl]. The horse heart cytochrome c (h-cyt c) was denatured by urea and guanidinium hydrochloride (GdnHCl), as well as by base-induced denaturation at pH 13, to provide a broad overview of the overall refolding behavior. The variation in the alkyl chain of the ionic liquids (ILs) showed a profound effect on the refolding of denatured h-cyt c. The ligand-induced refolding was correlated to understand the mechanism of the conformational stability of proteins in aqueous solutions of ILs. The results showed that the long chain ILs having the [C8mim]+ and [C10mim]+ cations promote the refolding of alkali-denatured h-cyt c. The IL having the [C10mim]+ cation efficiently refolded the alkali-denatured h-cyt c with the formation of the MG state, whereas the IL having the [C8mim]+ cation, which is known to be compatible for protein stability, shows slight refolding and forms a different transition state. The lifetime results show successful refolding of alkaline-denatured h-cyt c by both of the ILs, however, more refolding was observed in the case of [C10mim][Cl], and this was correlated with the fast and medium lifetimes (τ1 and τ2) obtained, which show an increase accompanied by an increase in secondary structure. The hydrophobic interactions plays an important role in the refolding of chemically and alkali-denatured h-cyt c by long chain imidazolium ILs. The formation of the MG state by [C10mim][Cl] was also confirmed, as some regular structure exists far below the CMC of IL. The overall results suggested that the [C10mim]+ cation bound to the unfolded h-cyt c triggers its refolding by electrostatic and hydrophobic interactions that stabilize the MG state.
Collapse
Affiliation(s)
- Upendra Kumar Singh
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi 110025 , India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi 110025 , India
| |
Collapse
|
37
|
Takekiyo T, Yoshimura Y. Suppression and dissolution of amyloid aggregates using ionic liquids. Biophys Rev 2018; 10:853-860. [PMID: 29696571 DOI: 10.1007/s12551-018-0421-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/08/2018] [Indexed: 12/22/2022] Open
Abstract
Amyloid aggregates are composed of protein fibrils with a dominant β-sheet structure, are water-insoluble, and are involved in the pathogenesis of many neurodegenerative diseases. Development of pharmaceuticals to treat these diseases and the design of recovery agents for amyloid-type inclusion bodies require the successful suppression and dissolution of such aggregates. Since ionic liquids (ILs) are composed of both a cation and anion and are known to suppress protein aggregation and to dissolve water-insoluble compounds such as cellulose; they may also have potential use as suppression/dissolution agents for amyloid aggregates. In the following review, we present the suppression and dissolution effects of ILs on amyloid aggregates so far reported. The protein-IL affinity (the ability of ILs to interact with amyloid proteins) was found to be the biochemical basis for ILs' suppression of amyloid formation, and the hydrogen-bonding basicity of ILs might be the basis for their ability to dissolve amyloid aggregates. These findings present the potential of ILs to serve as novel pharmaceuticals to treat neurodegenerative diseases and as recovery agents for various amyloid aggregates.
Collapse
Affiliation(s)
- Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan.
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan
| |
Collapse
|
38
|
Abstract
Bovine heart cytochrome c (bCyt c) is an extensively studied hemoprotein of only 104 residues. Due to the existence of isoforms generated by non-enzymatic deaminidation, crystallization of bCyt c is difficult and involves extensive purification and the use of microseeding or the presence of an electric field. Taking advantage of the capacity of cytochrome c (cyt c) to bind anions on its protein surface, the commercially available bCyt c was crystallized without extra purifications, using ammonium sulfate as precipitant and nitrate ions as additives. The structure of the ferric bCyt c in a new crystal form is described and compared with that previously solved at low ionic strength and with those of human and horse cyt c. The overall structure of bCyt c is conserved, while the side chains of several residues that play a role in the interactions of cyt c with its partners have different rotamers in the two structures. The effect of the presence of nitrate ions on the structure of the protein is then evaluated and compared with that observed in the case of ferrous and ferric horse heart cyt c.
Collapse
|
39
|
Reslan M, Kayser V. Ionic liquids as biocompatible stabilizers of proteins. Biophys Rev 2018; 10:781-793. [PMID: 29511969 DOI: 10.1007/s12551-018-0407-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
Ionic liquids (ILs) have recently emerged as versatile solvents and additives in the field of biotechnology, particularly as stabilizers of proteins and enzymes. Of interest to the biotechnology industry is the formulation of stable biopharmaceuticals, therapeutic proteins, and vaccines which have revolutionized the treatment of many diseases including debilitating conditions such as cancers and auto-immune diseases. The stabilization of therapeutic proteins is typically achieved using additives that prevent unfolding and aggregation of these proteins during manufacture, transport, and long-term storage. To determine if ILs could be used in the formulation of stable therapeutic proteins, a thorough understanding of the effects of ILs on protein stability is needed, as well as understanding the toxicity of ILs on humans, and other considerations for formulation development such as viscosity and osmolality. In this review, we summarize recent developments on the stabilization of proteins and enzymes using ILs, with emphasis on identifying biocompatible ILs that may be suitable for the formulation of stable biopharmaceuticals in the future.
Collapse
Affiliation(s)
- Mouhamad Reslan
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Veysel Kayser
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
40
|
Mukhopadhyay A, Das T, Datta A, Sharma KP. Neat Protein–Polymer Surfactant Bioconjugates as Universal Solvents. Biomacromolecules 2018; 19:943-950. [DOI: 10.1021/acs.biomac.7b01729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anasua Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tarasankar Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kamendra P. Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
41
|
Takekiyo T, Yoshida K, Funahashi Y, Nagata S, Abe H, Yamaguchi T, Yoshimura Y. Helix-forming ability of proteins in alkylammonium nitrate. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|