1
|
Zuo R, Liu R, Olguin J, Hudalla GA. Glycosylation of a Nonfibrillizing Appendage Alters the Self-Assembly Pathway of a Synthetic β-Sheet Fibrillizing Peptide. J Phys Chem B 2021; 125:6559-6571. [PMID: 34128680 PMCID: PMC9191660 DOI: 10.1021/acs.jpcb.1c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to their biocompatibility and biodegradability, short synthetic peptides that self-assemble into elongated β-sheet fibers (i.e., peptide nanofibers) are widely used to create biomaterials for diverse medical and biotechnology applications. Glycosylation, which is a common protein post-translational modification, is gaining interest for creating peptide nanofibers that can mimic the function of natural carbohydrate-modified proteins. Recent reports have shown that glycosylation can disrupt the fibrillization of natural amyloid-forming peptides. Here, using transmission electron microscopy, fluorescence microscopy, and thioflavin T spectroscopy, we show that glycosylation at a site external to the fibrillization domain can alter the self-assembly pathway of a synthetic fibrillizing peptide, NSGSGQQKFQFQFEQQ (NQ11). Specifically, an NQ11 variant modified with N-linked N-acetylglucosamine, N(GlcNAc)SGSG-Q11 (GQ11), formed β-sheet nanofibers more slowly than NQ11 in deionized water (pH 5.8), which correlated to the tendency of GQ11 to form a combination of short fibrils and nonfibrillar aggregates, whereas NQ11 formed extended nanofibers. Acidic phosphate buffer slowed the rate of GQ11 fibrillization and altered the morphology of the structures formed yet had no effect on NQ11 fibrillization rate or morphology. The buffer ionic strength had no effect on the fibrillization rate of either peptide, while the diphosphate anion had a similar effect on the rate of fibrillization of both peptides. Collectively, these data demonstrate that a glycan moiety located external to the β-sheet fibrillizing domain can alter the pH-dependent self-assembly pathway of a synthetic peptide, leading to significant changes in the fibril mass and morphology of the structures formed. These observations add to the understanding of the effect of glycosylation on peptide self-assembly and should guide future efforts to develop biomaterials from synthetic β-sheet fibrillizing glycopeptides.
Collapse
Affiliation(s)
- Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Juanpablo Olguin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Gregory A. Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Zanjani AAH, Reynolds NP, Zhang A, Schilling T, Mezzenga R, Berryman JT. Kinetic Control of Parallel versus Antiparallel Amyloid Aggregation via Shape of the Growing Aggregate. Sci Rep 2019; 9:15987. [PMID: 31690748 PMCID: PMC6831816 DOI: 10.1038/s41598-019-52238-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/14/2019] [Indexed: 11/09/2022] Open
Abstract
By combining atomistic and higher-level modelling with solution X-ray diffraction we analyse self-assembly pathways for the IFQINS hexapeptide, a bio-relevant amyloid former derived from human lysozyme. We verify that (at least) two metastable polymorphic structures exist for this system which are substantially different at the atomistic scale, and compare the conditions under which they are kinetically accessible. We further examine the higher-level polymorphism for these systems at the nanometre to micrometre scales, which is manifested in kinetic differences and in shape differences between structures instead of or as well as differences in the small-scale contact topology. Any future design of structure based inhibitors of the IFQINS steric zipper, or of close homologues such as TFQINS which are likely to have similar structures, should take account of this polymorphic assembly.
Collapse
Affiliation(s)
- Ali Asghar Hakami Zanjani
- University of Luxembourg, Department of Physics and Materials Science, 162a Avenue de la Fäıencerie, Luxembourg City, L-1511, Luxembourg
| | - Nicholas P Reynolds
- Swinburne University of Technology, ARC Training Centre for Biodevices, John Street, Melbourne, VIC, 3122, Australia
| | - Afang Zhang
- Shanghai University Department of Polymer Materials, Nanchen Street 333, Shanghai, 200444, China
| | - Tanja Schilling
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104, Freiburg im Breisgau, Germany
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, CH-8092, Zurich, Switzerland.,Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Joshua T Berryman
- University of Luxembourg, Department of Physics and Materials Science, 162a Avenue de la Fäıencerie, Luxembourg City, L-1511, Luxembourg.
| |
Collapse
|
3
|
Sasahara K, Yamaguchi K, So M, Goto Y. Polyphosphates diminish solubility of a globular protein and thereby promote amyloid aggregation. J Biol Chem 2019; 294:15318-15329. [PMID: 31439662 DOI: 10.1074/jbc.ra119.008662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/21/2019] [Indexed: 01/08/2023] Open
Abstract
Structural changes of globular proteins and their resultant amyloid aggregation have been associated with various human diseases, such as lysozyme amyloidosis and light-chain amyloidosis. Because many globular proteins can convert into amyloid fibrils in vitro, the mechanisms of amyloid fibril formation have been studied in various experimental systems, but several questions remain unresolved. Here, using several approaches, such as turbidimetry, fluorescence and CD spectroscopy, EM, and isothermal titration calorimetry, we examined the binding of polyphosphates to hen egg-white lysozyme under acidic conditions and observed polyphosphate-induced structural changes of the protein promoting its aggregation. Our data indicate that negatively charged polyphosphates bind to protein molecules with a net positive charge. The polyphosphate-bound, structurally destabilized protein molecules then start assembling into insoluble amorphous aggregates once they pass the solubility limit. We further show that the polyphosphates decrease the solubility limit of the protein and near this limit, the protein molecules are in a labile state and highly prone to converting into amyloid fibrils. Our results explain how polyphosphates affect amorphous aggregation of proteins, how amyloid formation is induced in the presence of polyphosphates, and how polyphosphate chain length is an important factor in amyloid formation.
Collapse
Affiliation(s)
- Kenji Sasahara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Yamaguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Summers KL, Schilling KM, Roseman G, Markham KA, Dolgova NV, Kroll T, Sokaras D, Millhauser GL, Pickering IJ, George GN. X-ray Absorption Spectroscopy Investigations of Copper(II) Coordination in the Human Amyloid β Peptide. Inorg Chem 2019; 58:6294-6311. [PMID: 31013069 DOI: 10.1021/acs.inorgchem.9b00507] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the main cause of age-related dementia and currently affects approximately 5.7 million Americans. Major brain changes associated with AD pathology include accumulation of amyloid beta (Aβ) protein fragments and formation of extracellular amyloid plaques. Redox-active metals mediate oligomerization of Aβ, and the resultant metal-bound oligomers have been implicated in the putative formation of harmful, reactive species that could contribute to observed oxidative damage. In isolated plaque cores, Cu(II) is bound to Aβ via histidine residues. Despite numerous structural studies of Cu(II) binding to synthetic Aβ in vitro, there is still uncertainty surrounding Cu(II) coordination in Aβ. In this study, we used X-ray absorption spectroscopy (XAS) and high energy resolution fluorescence detected (HERFD) XAS to investigate Cu(II) coordination in Aβ(1-42) under various solution conditions. We found that the average coordination environment in Cu(II)Aβ(1-42) is sensitive to X-ray photoreduction, changes in buffer composition, peptide concentration, and solution pH. Fitting of the extended X-ray absorption fine structure (EXAFS) suggests Cu(II) is bound in a mixture of coordination environments in monomeric Aβ(1-42) under all conditions studied. However, it was evident that on average only a single histidine residue coordinates Cu(II) in monomeric Aβ(1-42) at pH 6.1, in addition to 3 other oxygen or nitrogen ligands. Cu(II) coordination in Aβ(1-42) at pH 7.4 is similarly 4-coordinate with oxygen and nitrogen ligands, although an average of 2 histidine residues appear to coordinate at this pH. At pH 9.0, the average Cu(II) coordination environment in Aβ(1-42) appears to be 5-coordinate with oxygen and nitrogen ligands, including two histidine residues.
Collapse
Affiliation(s)
- Kelly L Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | - Kevin M Schilling
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Graham Roseman
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Kate A Markham
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Natalia V Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| |
Collapse
|
5
|
van der Munnik NP, Moss MA, Uline MJ. Obstacles to translating the promise of nanoparticles into viable amyloid disease therapeutics. Phys Biol 2019; 16:021002. [PMID: 30620933 DOI: 10.1088/1478-3975/aafc66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nanoparticles (NPs) constitute a powerful therapeutic platform with exciting prospects as potential inhibitors of amyloid-[Formula: see text] (Aβ) aggregation, a process associated with Alzheimer's disease (AD). Researchers have synthesized and tested a large collection of NPs with disparate sizes, shapes, electrostatic properties and surface ligands that evoke a variety of responses on Aβ aggregation. In spite of a decade of research on the NP-Aβ system and many promising experimental results, NPs have failed to progress to any level of clinical trials for AD. A theoretical framework with which to approach this physical system is presented featuring two simple metrics, (1) the extent to which NPs adsorb Aβ, and (2) the degree to which interaction with a NP alters Aβ conformation relative to aggregation propensity. Most of our current understanding of these two interactions has been gained through experimentation, and many of these studies are reviewed herein. We also provide a potential roadmap for studies that we believe could produce viable NPs as an effective AD therapeutic platform.
Collapse
Affiliation(s)
- N P van der Munnik
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States of America. Chemical Engineering Department, University of South Carolina, Columbia, SC 29208, United States of America
| | | | | |
Collapse
|
6
|
Luna-Martínez OD, Hernández-Santoyo A, Villalba-Velázquez MI, Sánchez-Alcalá R, Fernández-Velasco DA, Becerril B. Stabilizing an amyloidogenic λ6 light chain variable domain. FEBS J 2017; 284:3702-3717. [DOI: 10.1111/febs.14265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Oscar D. Luna-Martínez
- Departamento de Medicina Molecular y Bioprocesos; Instituto de Biotecnología; Universidad Nacional Autónoma de México; Cuernavaca Mexico
| | - Alejandra Hernández-Santoyo
- Departamento de Química de Biomacromoléculas; Instituto de Química; Universidad Nacional Autónoma de México; Ciudad de México Mexico
| | - Myriam I. Villalba-Velázquez
- Departamento de Medicina Molecular y Bioprocesos; Instituto de Biotecnología; Universidad Nacional Autónoma de México; Cuernavaca Mexico
| | - Rosalba Sánchez-Alcalá
- Departamento de Medicina Molecular y Bioprocesos; Instituto de Biotecnología; Universidad Nacional Autónoma de México; Cuernavaca Mexico
| | - Daniel A. Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas; Facultad de Medicina; Universidad Nacional Autónoma de México; Ciudad de México Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos; Instituto de Biotecnología; Universidad Nacional Autónoma de México; Cuernavaca Mexico
| |
Collapse
|