1
|
Mustafa R, Diorio D, Harper M, Punihaole D. Revealing two distinct molecular binding modes in polyethyleneimine-DNA polyplexes using infrared spectroscopy. SOFT MATTER 2025; 21:4192-4200. [PMID: 40326406 PMCID: PMC12053835 DOI: 10.1039/d5sm00213c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
In this study, we use infrared spectroscopy to investigate the molecular binding modes of DNA with linear and branched polyethylenimine (LPEI and BPEI). PEI-based polymers are widely studied as non-viral gene delivery vectors, but their low transfection efficiency limits their clinical success. One key factor affecting their performance is how they bind DNA as it directly impacts the packaging, protection, and release of the cargo in cells. While PEI-DNA binding has traditionally been viewed through the lens of electrostatics, computational models suggest additional binding mechanisms may be involved. Our findings reveal that LPEI and BPEI exhibit two distinct molecular binding modes, which influence DNA packaging into polyplexes. Identifying these binding modes provides critical insights into polymer complexation mechanisms to nucleic acids that can guide the rational design of more efficient and versatile PEI-based gene delivery systems.
Collapse
Affiliation(s)
- Rusul Mustafa
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont, USA.
| | - Danielle Diorio
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont, USA.
| | - Madeline Harper
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont, USA.
| | - David Punihaole
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont, USA.
| |
Collapse
|
2
|
Fliervoet LA, Lisitsyna ES, Durandin NA, Kotsis I, Maas-Bakker RFM, Yliperttula M, Hennink WE, Vuorimaa-Laukkanen E, Vermonden T. Structure and Dynamics of Thermosensitive pDNA Polyplexes Studied by Time-Resolved Fluorescence Spectroscopy. Biomacromolecules 2020; 21:73-88. [PMID: 31500418 PMCID: PMC6961130 DOI: 10.1021/acs.biomac.9b00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/29/2019] [Indexed: 12/15/2022]
Abstract
Combining multiple stimuli-responsive functionalities into the polymer design is an attractive approach to improve nucleic acid delivery. However, more in-depth fundamental understanding how the multiple functionalities in the polymer structures are influencing polyplex formation and stability is essential for the rational development of such delivery systems. Therefore, in this study the structure and dynamics of thermosensitive polyplexes were investigated by tracking the behavior of labeled plasmid DNA (pDNA) and polymer with time-resolved fluorescence spectroscopy using fluorescence resonance energy transfer (FRET). The successful synthesis of a heterofunctional poly(ethylene glycol) (PEG) macroinitiator containing both an atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) initiator is reported. The use of this novel PEG macroinitiator allows for the controlled polymerization of cationic and thermosensitive linear triblock copolymers and labeling of the chain-end with a fluorescent dye by maleimide-thiol chemistry. The polymers consisted of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), hydrophilic PEG (P), and cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, D) block, further referred to as NPD. Polymer block D chain-ends were labeled with Cy3, while pDNA was labeled with FITC. The thermosensitive NPD polymers were used to prepare pDNA polyplexes, and the effect of the N/P charge ratio, temperature, and composition of the triblock copolymer on the polyplex properties were investigated, taking nonthermosensitive PD polymers as the control. FRET was observed both at 4 and 37 °C, indicating that the introduction of the thermosensitive PNIPAM block did not compromise the polyplex structure even above the polymer's cloud point. Furthermore, FRET results showed that the NPD- and PD-based polyplexes have a less dense core compared to polyplexes based on cationic homopolymers (such as PEI) as reported before. The polyplexes showed to have a dynamic character meaning that the polymer chains can exchange between the polyplex core and shell. Mobility of the polymers allow their uniform redistribution within the polyplex and this feature has been reported to be favorable in the context of pDNA release and subsequent improved transfection efficiency, compared to nondynamic formulations.
Collapse
Affiliation(s)
- Lies A.
L. Fliervoet
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Ekaterina S. Lisitsyna
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Nikita A. Durandin
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Ilias Kotsis
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Roel F. M. Maas-Bakker
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Marjo Yliperttula
- Division
of Pharmaceutical Biosciences and Drug Research Program, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Elina Vuorimaa-Laukkanen
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
3
|
Fliervoet LAL, van Nostrum CF, Hennink WE, Vermonden T. Balancing hydrophobic and electrostatic interactions in thermosensitive polyplexes for nucleic acid delivery. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab12ee] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Zhu M, Song D, Liu N, Wang K, Su J, Xiong M, Zhang X, Xu Y, Gao E. Isomeric Effect on the anticancer Behavior of two Zinc (II) complexes based on 3,5‐bis(1‐imidazoly) pyridine: Experimental and Theoretical Approach. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mingchang Zhu
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Da Song
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Ning Liu
- Liaoning Institute for Food Control (Liaoning Institute of Pharmaceutical Research) Shenyang 110015 China
| | - Kehua Wang
- School of Chemistry and Life ScienceAnshan Normal University Anshan China
| | - Junqi Su
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Meng Xiong
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Xi Zhang
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Yuang Xu
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Enjun Gao
- The key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province, Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
- School of Chemical EngineeringUniversity of Science and Technology Liaoning Anshan 114051 China
| |
Collapse
|
5
|
Fliervoet LAL, Engbersen JFJ, Schiffelers RM, Hennink WE, Vermonden T. Polymers and hydrogels for local nucleic acid delivery. J Mater Chem B 2018; 6:5651-5670. [DOI: 10.1039/c8tb01795f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focusses on the rational design of materials (from polymers to hydrogel materials) to achieve successful local delivery of therapeutic nucleic acids.
Collapse
Affiliation(s)
- Lies A. L. Fliervoet
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| | - Johan F. J. Engbersen
- Department of Controlled Drug Delivery
- MIRA Institute for Biomedical Technology and Technical Medicine
- Faculty of Science and Technology
- University of Twente
- Enschede
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology
- University Medical Center Utrecht
- 3584 CX Utrecht
- The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics
- Utrecht Institute for Pharmaceutical Sciences
- Utrecht University
- 3508 TB Utrecht
- The Netherlands
| |
Collapse
|