1
|
López-Olivos JC, Álvarez-García A, Garza Ramos G, Huerta L, Molina P, Heredia-Barbero A, Garzón IL, Rodríguez-Zamora P. Metal-ligand interface effect in the chirality transfer from l- and d-glutathione to gold, silver and copper nanoparticles. NANOSCALE ADVANCES 2025; 7:2648-2662. [PMID: 40109506 PMCID: PMC11915459 DOI: 10.1039/d5na00208g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Glutathione (GSH) plays a pivotal role in numerous physiological and metabolic processes, including the defense of cells against free radicals and metal toxicity. This tripeptide has been combined with several metal nanoparticles to form a metal-organic interface with unique properties. Here, we implement a one-step, high-yield synthesis method to produce ultrasmall gold, silver, and copper nanoparticles in the intermediate size regime between size-selected nanoclusters and plasmonic nanoparticles to be functionalized with l- and d-glutathione, and study the chirality transfer evidenced by the emergent optical activity observed for each case. The distinctive interactions that take place at the metal-ligand interface for each metal are primarily accountable for establishing the properties of this system. In its protonated state, glutathione anchors only by its thiol group to the surface of gold and copper nanoparticles, whilst for silver nanoparticles an additional binding site through the nitrogen atom of the amide group was indicated by XPS data, albeit with a relatively low proportion. This may contribute to the higher anisotropy factor observed in silver-glutathione nanoparticles. Such slight variations in adsorption configuration generate different chiroptical activity, which has been analyzed per energy region using time-dependent DFT calculations, revealing that metal-to-ligand transitions dominate most of the spectra while ligand-to-ligand are also present in the higher energy regime. Moreover, FTIR and CD data together suggest that those dissimilarities also propitiate particular peptide self-assemblies through intermolecular GSH interactions for each metal, which result in supramolecular structures with properties of beta-sheet arrays. This study offers a parallel examination of the chirality of glutathione-functionalized coinage metals, allowing to establish decisive differences that can be tailored to benefit developments in chiral biomedicine and other diverse applications.
Collapse
Affiliation(s)
- Juan Carlos López-Olivos
- Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364 Ciudad de México 01000 Mexico
| | - Andrés Álvarez-García
- Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364 Ciudad de México 01000 Mexico
| | - Georgina Garza Ramos
- Facultad de Medicina, Universidad Nacional Autónoma de México Av. Universidad 3000 Ciudad de México 04510 Mexico
| | - Lázaro Huerta
- Instituto de Investigación en Materiales, Universidad Nacional Autónoma de México Circuito Exterior S/N, Circuito de la Investigación Científica 04510 Ciudad de México 04510 Mexico
| | - Paola Molina
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Circuito Exterior S/N, Ciudad Universitaria, Apartado Postal 70-543 C.P. 04510 Mexico
| | - Alejandro Heredia-Barbero
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Circuito Exterior S/N, Ciudad Universitaria, Apartado Postal 70-543 C.P. 04510 Mexico
| | - Ignacio L Garzón
- Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364 Ciudad de México 01000 Mexico
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid E-47011 Valladolid Spain
| | - Penélope Rodríguez-Zamora
- Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364 Ciudad de México 01000 Mexico
| |
Collapse
|
2
|
Valli D, Ooi SA, Scattolini G, Chaudhary H, Tietze AA, Maj M. Improving cryo-EM grids for amyloid fibrils using interface-active solutions and spectator proteins. Biophys J 2024; 123:718-729. [PMID: 38368506 PMCID: PMC10995402 DOI: 10.1016/j.bpj.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
Preparation of cryoelectron microscopy (cryo-EM) grids for imaging of amyloid fibrils is notoriously challenging. The human islet amyloid polypeptide (hIAPP) serves as a notable example, as the majority of reported structures have relied on the use of nonphysiological pH buffers, N-terminal tags, and seeding. This highlights the need for more efficient, reproducible methodologies that can elucidate amyloid fibril structures formed under diverse conditions. In this work, we demonstrate that the distribution of fibrils on cryo-EM grids is predominantly determined by the solution composition, which is critical for the stability of thin vitreous ice films. We discover that, among physiological pH buffers, HEPES uniquely enhances the distribution of fibrils on cryo-EM grids and improves the stability of ice layers. This improvement is attributed to direct interactions between HEPES molecules and hIAPP, effectively minimizing the tendency of hIAPP to form dense clusters in solutions and preventing ice nucleation. Furthermore, we provide additional support for the idea that denatured protein monolayers forming at the interface are also capable of eliciting a surfactant-like effect, leading to improved particle coverage. This phenomenon is illustrated by the addition of nonamyloidogenic rat IAPP (rIAPP) to a solution of preaggregated hIAPP just before the freezing process. The resultant grids, supplemented with this "spectator protein", exhibit notably enhanced coverage and improved ice quality. Unlike conventional surfactants, rIAPP is additionally capable of disentangling the dense clusters formed by hIAPP. By applying the proposed strategies, we have resolved the structure of the dominant hIAPP polymorph, formed in vitro at pH 7.4, to a final resolution of 4 Å. The advances in grid preparation presented in this work hold significant promise for enabling structural determination of amyloid proteins which are particularly resistant to conventional grid preparation techniques.
Collapse
Affiliation(s)
- Dylan Valli
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Giorgio Scattolini
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Himanshu Chaudhary
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Alesia A Tietze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Basu A, Tolbatov I, Marrone A, Vaskevich A, Chuntonov L. Noble Metal Nanoparticles with Nanogel Coatings: Coinage Metal Thiolate-Stabilized Glutathione Hydrogel Shells. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:3438-3448. [PMID: 38445015 PMCID: PMC10911076 DOI: 10.1021/acs.jpcc.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
Developing biocompatible nanocoatings is crucial for biomedical applications. Noble metal colloidal nanoparticles with biomolecular shells are thought to combine diverse chemical and optothermal functionalities with biocompatibility. Herein, we present nanoparticles with peptide hydrogel shells that feature an unusual combination of properties: the metal core possesses localized plasmon resonance, whereas a few-nanometer-thick shells open opportunities to employ their soft framework for loading and scaffolding. We demonstrate this concept with gold and silver nanoparticles capped by glutathione peptides stacked into parallel β-sheets as they aggregate on the surface. A key role in the formation of the ordered structure is played by coinage metal(I) thiolates, i.e., Ag(I), Cu(I), and Au(I). The shell thickness can be controlled via the concentration of either metal ions or peptides. Theoretical modeling of the shell's molecular structure suggests that the thiolates have a similar conformation for all the metals and that the parallel β-sheet-like structure is a kinetic product of the peptide aggregation. Using third-order nonlinear two-dimensional infrared spectroscopy, we revealed that the ordered secondary structure is similar to the bulk hydrogels of the coinage metal thiolates of glutathione, which also consist of aggregated stacked parallel β-sheets. We expect that nanoparticles with hydrogel shells will be useful additions to the nanomaterial toolbox. The present method of nanogel coating can be applied to arbitrary surfaces where the initial deposition of the seed glutathione monolayer is possible.
Collapse
Affiliation(s)
- Arghyadeep Basu
- Schulich
Faculty of Chemistry and Solid-State Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Iogann Tolbatov
- Department
of Physics and Astronomy, University of
Padova, via F. Marzolo 8, 35131 Padova, Italy
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Alessandro Marrone
- Dipartimento
di Farmacia, Università degli Studi
“G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Alexander Vaskevich
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lev Chuntonov
- Schulich
Faculty of Chemistry and Solid-State Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
4
|
Holcombe B, Foes A, Banerjee S, Yeh K, Wang SHJ, Bhargava R, Ghosh A. Intermediate Antiparallel β Structure in Amyloid β Plaques Revealed by Infrared Spectroscopic Imaging. ACS Chem Neurosci 2023; 14:3794-3803. [PMID: 37800883 PMCID: PMC10662787 DOI: 10.1021/acschemneuro.3c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Aggregation of amyloid β (Aβ) peptides into extracellular plaques is a hallmark of the molecular pathology of Alzheimer's disease (AD). Amyloid aggregates have been extensively studied in vitro, and it is well-known that mature amyloid fibrils contain an ordered parallel β structure. The structural evolution from unaggregated peptide to fibrils can be mediated through intermediate structures that deviate significantly from mature fibrils, such as antiparallel β-sheets. However, it is currently unknown if these intermediate structures exist in plaques, which limits the translation of findings from in vitro structural characterizations of amyloid aggregates to AD. This arises from the inability to extend common structural biology techniques to ex vivo tissue measurements. Here we report the use of infrared (IR) imaging, wherein we can spatially localize plaques and probe their protein structural distributions with the molecular sensitivity of IR spectroscopy. Analyzing individual plaques in AD tissues, we demonstrate that fibrillar amyloid plaques exhibit antiparallel β-sheet signatures, thus providing a direct connection between in vitro structures and amyloid aggregates in the AD brain. We further validate results with IR imaging of in vitro aggregates and show that the antiparallel β-sheet structure is a distinct structural facet of amyloid fibrils.
Collapse
Affiliation(s)
- Brooke Holcombe
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Abigail Foes
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Kevin Yeh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shih-Hsiu J. Wang
- Departments of Pathology and Neurology, Duke University, Durham, NC 27710, USA
| | - Rohit Bhargava
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| |
Collapse
|
5
|
D'Andrea C, Cazzaniga FA, Bistaffa E, Barucci A, de Angelis M, Banchelli M, Farnesi E, Polykretis P, Marzi C, Indaco A, Tiraboschi P, Giaccone G, Matteini P, Moda F. Impact of seed amplification assay and surface-enhanced Raman spectroscopy combined approach on the clinical diagnosis of Alzheimer's disease. Transl Neurodegener 2023; 12:35. [PMID: 37438825 DOI: 10.1186/s40035-023-00367-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The current diagnosis of Alzheimer's disease (AD) is based on a series of analyses which involve clinical, instrumental and laboratory findings. However, signs, symptoms and biomarker alterations observed in AD might overlap with other dementias, resulting in misdiagnosis. METHODS Here we describe a new diagnostic approach for AD which takes advantage of the boosted sensitivity in biomolecular detection, as allowed by seed amplification assay (SAA), combined with the unique specificity in biomolecular recognition, as provided by surface-enhanced Raman spectroscopy (SERS). RESULTS The SAA-SERS approach supported by machine learning data analysis allowed efficient identification of pathological Aβ oligomers in the cerebrospinal fluid of patients with a clinical diagnosis of AD or mild cognitive impairment due to AD. CONCLUSIONS Such analytical approach can be used to recognize disease features, thus allowing early stratification and selection of patients, which is fundamental in clinical treatments and pharmacological trials.
Collapse
Affiliation(s)
- Cristiano D'Andrea
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Federico Angelo Cazzaniga
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Edoardo Bistaffa
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Andrea Barucci
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Marella de Angelis
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Martina Banchelli
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
| | - Panagis Polykretis
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Chiara Marzi
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Antonio Indaco
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Pietro Tiraboschi
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy.
| | - Fabio Moda
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy.
| |
Collapse
|
6
|
Zhaliazka K, Matveyenka M, Kurouski D. Lipids uniquely alter the secondary structure and toxicity of amyloid beta 1-42 aggregates. FEBS J 2023; 290:3203-3220. [PMID: 36705524 PMCID: PMC10389563 DOI: 10.1111/febs.16738] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Abrupt aggregation of amyloid β1-42 (Aβ) peptide is a hallmark of Alzheimer's disease (AD), a severe pathology that affects more than 44 million people worldwide. A growing body of evidence suggests that lipids can uniquely alter rates of Aβ1-42 aggregation. However, it remains unclear whether lipids only alter rates of protein aggregation or also uniquely modify the secondary structure and toxicity of Aβ1-42 oligomers and fibrils. In this study, we investigated the effect of phosphatidylcholine (PC), cardiolipin (CL), and cholesterol (Chol) on Aβ1-42 aggregation. We found that PC, CL and Chol strongly accelerated the rate of fibril formation compared to the rate of Aβ1-42 aggregation in the lipid-free environment. Furthermore, anionic CL enabled the strongest acceleration of Aβ1-42 aggregation compared to zwitterionic PC and uncharged Chol. We also found that PC, CL and Chol uniquely altered the secondary structure of early-, middle- and late-stage Aβ1-42 aggregates. Specifically, CL and Chol drastically increased the amount of parallel β-sheet in Aβ1-42 oligomers and fibrils grown in the presence of these lipids. This caused a significant increase in the toxicity of Aβ : CL and Aβ : Chol compared to the toxicity of Aβ : PC and Aβ1-42 aggregates formed in the lipid-free environment. These results demonstrate that toxicity of Aβ aggregates correlates with the amount of their β-sheet content, which, in turn, is determined by the chemical structure of lipids present at the stage of Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843, United States
| |
Collapse
|
7
|
Holcombe B, Foes A, Banerjee S, Yeh K, Wang SHJ, Bhargava R, Ghosh A. Intermediate antiparallel beta structure in amyloid plaques revealed by infrared spectroscopic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537414. [PMID: 37131832 PMCID: PMC10153194 DOI: 10.1101/2023.04.18.537414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aggregation of amyloid beta (Aβ) peptides into extracellular plaques is a hallmark of the molecular pathology of Alzheimer's disease (AD). Amyloid aggregates have been extensively studied in-vitro, and it is well known that mature amyloid fibrils contain an ordered parallel β structure. The structural evolution from unaggregated peptide to fibrils can be mediated through intermediate structures that deviate significantly from mature fibrils, such as antiparallel β-sheets. However, it is currently unknown if these intermediate structures exist in plaques, which limits the translation of findings from in-vitro structural characterizations of amyloid aggregates to AD. This arises from the inability to extend common structural biology techniques to ex-vivo tissue measurements. Here we report the use of infrared (IR) imaging, wherein we can spatially localize plaques and probe their protein structural distributions with the molecular sensitivity of IR spectroscopy. Analyzing individual plaques in AD tissues, we demonstrate that fibrillar amyloid plaques exhibit antiparallel β-sheet signatures, thus providing a direct connection between in-vitro structures and amyloid aggregates in AD brain. We further validate results with IR imaging of in-vitro aggregates and show that antiparallel β-sheet structure is a distinct structural facet of amyloid fibrils.
Collapse
Affiliation(s)
- Brooke Holcombe
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Abigail Foes
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Kevin Yeh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shih-Hsiu J. Wang
- Departments of Pathology and Neurology, Duke University, Durham, NC 27710, USA
| | - Rohit Bhargava
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| |
Collapse
|
8
|
Zhaliazka K, Kurouski D. Nanoscale imaging of individual amyloid aggregates extracted from brains of Alzheimer and Parkinson patients reveals presence of lipids in α-synuclein but not in amyloid β 1-42 fibrils. Protein Sci 2023; 32:e4598. [PMID: 36823759 PMCID: PMC10019452 DOI: 10.1002/pro.4598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Abrupt aggregation of misfolded proteins is the underlying molecular cause of Alzheimer disease (AD) and Parkinson disease (PD). Both AD and PD are severe pathologies that affect millions of people around the world. A small 42 amino acid long peptide, known as amyloid β (Aβ), aggregates in the frontal cortex of AD patients forming oligomers and fibrils, highly toxic protein aggregates that cause progressive neuron death. Similar aggregates of α-synuclein (α-Syn), a small protein that facilitates neurotransmitter release, are observed in the midbrain, hypothalamus, and thalamus of people with PD. In this study, we utilized the innovative nano-Infrared imaging technique to investigate the structural organization of individual Aβ and α-syn fibrils postmortem extracted from brains of AD and PD patients, respectively. We observed two morphologically different Aβ and α-Syn fibril polymorphs in each patient's brain. One had twisted topology, whereas another exhibited flat tape-like morphology. We found that both polymorphs shared the same parallel β-sheet-dominated secondary structure. These findings suggested that both fibril polymorphs were built from structurally similar if not identical filaments that coiled forming twisted fibrils or associated side-by-side in the case of straight Aβ and α-Syn fibrils. Nano-Infrared analysis of individual protein aggregates also revealed the presence of lipids in the structure of both twisted and tape-like α-Syn fibrils that were not observed in any of the Aβ fibril polymorphs. These findings demonstrate that lipid membranes can play a critically important role in the onset and progression of PD.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Dmitry Kurouski
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
9
|
Rutherford SH, Baker MJ, Hunt NT. 2D-IR spectroscopy of proteins in H 2O-A Perspective. J Chem Phys 2023; 158:030901. [PMID: 36681646 DOI: 10.1063/5.0129480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The form of the amide I infrared absorption band provides a sensitive probe of the secondary structure and dynamics of proteins in the solution phase. However, the frequency coincidence of the amide I band with the bending vibrational mode of H2O has necessitated the widespread use of deuterated solvents. Recently, it has been demonstrated that ultrafast 2D-IR spectroscopy allows the detection of the protein amide I band in H2O-based fluids, meaning that IR methods can now be applied to study proteins in physiologically relevant solvents. In this perspective, we describe the basis of the 2D-IR method for observing the protein amide I band in H2O and show how this development has the potential to impact areas ranging from our fundamental appreciation of protein structural dynamics to new applications for 2D-IR spectroscopy in the analytical and biomedical sciences. In addition, we discuss how the spectral response of water, rather than being a hindrance, now provides a basis for new approaches to data pre-processing, standardization of 2D-IR data collection, and signal quantification. Ultimately, we visualize a direction of travel toward the creation of 2D-IR spectral libraries that can be linked to advanced computational methods for use in high-throughput protein screening and disease diagnosis.
Collapse
Affiliation(s)
- Samantha H Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Matthew J Baker
- School of Medicine, Faculty of Clinical Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
10
|
Beasley MA, Dunkelberger AD, Thum MD, Ryland ES, Fears KP, Grafton AB, Owrutsky JC, Lundin JG, So CR. Extremophilic behavior of catalytic amyloids sustained by backbone structuring. J Mater Chem B 2022; 10:9400-9412. [PMID: 36285764 DOI: 10.1039/d2tb01605b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Enzyme function relies on the placement of chemistry defined by solvent and self-associative hydrogen bonding displayed by the protein backbone. Amyloids, long-range multi-peptide and -protein materials, can mimic enzyme functions while having a high proportion of stable self-associative backbone hydrogen bonds. Though catalytic amyloid structures have exhibited a degree of temperature and solvent stability, defining their full extremophilic properties and the molecular basis for such extreme activity has yet to be realized. Here we demonstrate that, like thermophilic enzymes, catalytic amyloid activity persists across high temperatures with an optimum activity at 81 °C where they are 30-fold more active than at room temperature. Unlike thermophilic enzymes, catalytic amyloids retain both activity and structure well above 100 °C as well as in the presence of co-solvents. Changes in backbone vibrational states are resolved in situ using non-linear 2D infrared spectroscopy (2DIR) to reveal that activity is sustained by reorganized backbone hydrogen bonds in extreme environments, evidenced by an emergent vibrational mode centered at 1612 cm-1. Restructuring also occurs in organic solvents, and facilitates complete retention of hydrolysis activity in co-solvents of lesser polarity. We support these findings with molecular modeling, where the displacement of water by co-solvents leads to shorter, less competitive, bonding lifetimes that further stabilize self-associative backbone interactions. Our work defines amyloid properties that counter classical proteins, where extreme environments induce mechanisms of restructuring to support enzyme-like functions necessary for synthetic applications.
Collapse
Affiliation(s)
- Maryssa A Beasley
- NRC Postdoctoral Associate Sited in Chemistry Division, Code 6176, U.S. Naval Research Laboratory, Washington, DC 20375-5342, USA
| | - Adam D Dunkelberger
- Chemistry Division, Code 6121, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC 20375-5342, USA
| | - Matthew D Thum
- ASEE Postdoctoral Associate Sited in Chemistry Division, Code 6124, U.S. Naval Research Laboratory, Washington, DC 20375-5342, USA
| | - Elizabeth S Ryland
- NRC Postdoctoral Associate Sited in Chemistry Division, Code 6121, U.S. Naval Research Laboratory, Washington, DC 20375-5342, USA
| | - Kenan P Fears
- Chemistry Division, Code 6176, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC 20375-5342, USA.
| | - Andrea B Grafton
- NRC Postdoctoral Associate Sited in Chemistry Division, Code 6121, U.S. Naval Research Laboratory, Washington, DC 20375-5342, USA
| | - Jeffrey C Owrutsky
- Chemistry Division, Code 6121, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC 20375-5342, USA
| | - Jeffrey G Lundin
- Chemistry Division, Code 6124, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC 20375-5342, USA
| | - Christopher R So
- Chemistry Division, Code 6176, US Naval Research Laboratory, 4555 Overlook Ave, SW, Washington, DC 20375-5342, USA.
| |
Collapse
|
11
|
Zhaliazka K, Kurouski D. Nanoscale Characterization of Parallel and Antiparallel β-Sheet Amyloid Beta 1-42 Aggregates. ACS Chem Neurosci 2022; 13:2813-2820. [PMID: 36122250 PMCID: PMC10405294 DOI: 10.1021/acschemneuro.2c00180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abrupt aggregation of amyloid beta (Aβ) peptide is strongly associated with Alzheimer's disease. In this study, we used atomic force microscopy-infrared (AFM-IR) spectroscopy to characterize the secondary structure of Aβ oligomers, protofibrils and fibrils formed at the early (4 h), middle (24 h), and late (72 h) stages of protein aggregation. This innovative spectroscopic approach allows for label-free nanoscale structural characterization of individual protein aggregates. Using AFM-IR, we found that at the early stage of protein aggregation, oligomers with parallel β-sheet dominated. However, these species exhibited slower rates of fibril formation compared to the oligomers with antiparallel β-sheet, which first appeared in the middle stage. These antiparallel β-sheet oligomers rapidly propagated into fibrils that were simultaneously observed together with parallel β-sheet fibrils at the late stage of protein aggregation. Our findings showed that aggregation of Aβ is a complex process that yields several distinctly different aggregates with dissimilar toxicities.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
12
|
Applications of Single-Molecule Vibrational Spectroscopic Techniques for the Structural Investigation of Amyloid Oligomers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196448. [PMID: 36234985 PMCID: PMC9573641 DOI: 10.3390/molecules27196448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Amyloid oligomeric species, formed during misfolding processes, are believed to play a major role in neurodegenerative and metabolic diseases. Deepening the knowledge about the structure of amyloid intermediates and their aggregation pathways is essential in understanding the underlying mechanisms of misfolding and cytotoxicity. However, structural investigations are challenging due to the low abundance and heterogeneity of those metastable intermediate species. Single-molecule techniques have the potential to overcome these difficulties. This review aims to report some of the recent advances and applications of vibrational spectroscopic techniques for the structural analysis of amyloid oligomers, with special focus on single-molecule studies.
Collapse
|
13
|
Banerjee S, Holcombe B, Ringold S, Foes A, Naik T, Baghel D, Ghosh A. Nanoscale Infrared Spectroscopy Identifies Structural Heterogeneity in Individual Amyloid Fibrils and Prefibrillar Aggregates. J Phys Chem B 2022; 126:5832-5841. [PMID: 35914320 DOI: 10.1021/acs.jpcb.2c04797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amyloid plaques are one of the central manifestations of Alzheimer's disease pathology. Aggregation of the amyloid beta (Aβ) protein from amorphous oligomeric species to mature fibrils has been extensively studied. However, structural heterogeneities in prefibrillar species, and how that affects the structure of later-stage aggregates are not yet well understood. The integration of infrared spectroscopy with atomic force microscopy (AFM-IR) allows for identifying the signatures of individual nanoscale aggregates by spatially resolving spectra. We use AFM-IR to demonstrate that amyloid oligomers exhibit significant structural variations as evidenced in their infrared spectra. This heterogeneity is transmitted to and retained in protofibrils and fibrils. We show that amyloid fibrils do not always conform to their putative ordered structure and structurally different domains exist in the same fibril. We further demonstrate that these structural heterogeneities manifest themselves as a lack of β sheet structure in amyloid plaques in Alzheimer's tissue using infrared imaging.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Brooke Holcombe
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Sydney Ringold
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Abigail Foes
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Tanmayee Naik
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
14
|
Dicke SS, Maj M, Fields CR, Zanni MT. Metastable intermediate during hIAPP aggregation catalyzed by membranes as detected with 2D IR spectroscopy. RSC Chem Biol 2022; 3:931-940. [PMID: 35866164 PMCID: PMC9257649 DOI: 10.1039/d2cb00028h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) into amyloid fibrils involves formation of oligomeric intermediates that are thought to be the cytotoxic species responsible for β-cell dysfunction in type 2 diabetes. hIAPP oligomers permeating or disrupting the cellular membrane may be one mechanism of toxicity and so measuring the structural kinetics of aggregation in the presence of membranes is of much interest. In this study, we use 2D IR spectroscopy and 13C18O isotope labeling to study the secondary structure of the oligomeric intermediates formed in solution and in the presence of phospholipid vesicles at sites L12A13, L16V17, G24A25 and V32G33. Pairs of labels monitor the couplings between associated polypeptides and the dihedral angles between adjacent residues. In solution, the L12A13 residues form an oligomeric β-sheet in addition to an α-helix whereas with the phospholipid vesicles they are α-helical throughout the aggregation process. In both solution and with DOPC vesicles, L16V17 and V32G33 have disordered structures until fibrils are formed. Similarly, under both conditions, G24A25 exhibits 3-state kinetics, created by an oligomeric intermediate with a well-defined β-sheet structure. Amyloid fibril formation is often thought to involve intermediates with exceedingly low populations that are difficult to detect experimentally. These experiments establish that amyloid fibril formation of hIAPP when catalyzed by membranes includes a metastable intermediate and that this intermediate has a similar structure at G24A25 in the FGAIL region as the corresponding intermediate in solution, thought to be the toxic species. 2D IR and 13C18O isotope labeling establish that amyloid formation of hIAPP catalyzed by membranes includes a metastable intermediate with a similar structure at G24A25 in the FGAIL region as the corresponding intermediate in solution.![]()
Collapse
Affiliation(s)
- Sidney S Dicke
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA .,Formally at Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Caitlyn R Fields
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
15
|
Weeks WB, Tainter CJ, Buchanan LE. Investigating the effects of N-terminal acetylation on KFE8 self-assembly with 2D IR spectroscopy. Biophys J 2022; 121:1549-1559. [PMID: 35247339 PMCID: PMC9072574 DOI: 10.1016/j.bpj.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 12/01/2022] Open
Abstract
Peptide self-assembly is an exciting and robust approach to create novel nanoscale materials for biomedical applications. However, the complex interplay between intra- and intermolecular interactions in peptide aggregation means that minor changes in peptide sequence can yield dramatic changes in supramolecular structure. Here, we use two-dimensional infrared (2D IR) spectroscopy to study a model amphiphilic peptide, KFE8, and its N-terminal acetylated counterpart, AcKFE8. 2D IR spectra of isotope-labeled peptides reveal that AcKFE8 aggregates comprise two distinct β-sheet structures while KFE8 aggregates comprise only one of these structures. Using an excitonic Hamiltonian to simulate the vibrational spectra of model β-sheets, we determine that the spectra are consistent with antiparallel β-sheets with different strand alignments, specifically a two-residue shift in the register of the β-strands. These findings bring forth new insights into how N-terminal acetylation may subtly impact secondary structure, leading to larger effects on overall aggregate morphology. Additionally, these results highlight the importance of understanding the residue-level structural differences that result from changes in peptide sequence in order to facilitate the rational design of peptide materials.
Collapse
Affiliation(s)
- William B Weeks
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Craig J Tainter
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
16
|
Yang S, Zhang Q, Yang H, Shi H, Dong A, Wang L, Yu S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int J Biol Macromol 2022; 206:175-187. [PMID: 35217087 DOI: 10.1016/j.ijbiomac.2022.02.104] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Infrared (IR) spectroscopy is a highly sensitive technique that provides complete information on chemical compositions. The IR spectra of proteins or peptides give rise to nine characteristic IR absorption bands. The amide I bands are the most prominent and sensitive vibrational bands and widely used to predict protein secondary structures. The interference of H2O absorbance is the greatest challenge for IR protein secondary structure prediction. Much effort has been made to reduce/eliminate the interference of H2O, simplify operation steps, and increase prediction accuracy. Progress in sampling and equipment has rendered the Fourier transform infrared (FTIR) technique suitable for determining the protein secondary structure in broader concentration ranges, greatly simplifying the operating steps. This review highlights the recent progress in sample preparation, data analysis, and equipment development of FTIR in A/T mode, with a focus on recent applications of FTIR spectroscopy in the prediction of protein secondary structure. This review also provides a brief introduction of the progress in ATR-FTIR for predicting protein secondary structure and discusses some combined IR methods, such as AFM-based IR spectroscopy, that are used to analyze protein structural dynamics and protein aggregation.
Collapse
Affiliation(s)
- Shouning Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | | | - Huayan Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haimei Shi
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Aichun Dong
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO, USA.
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
17
|
Price DA, Wedamulla P, Hill TD, Loth TM, Moran SD. The polarization dependence of 2D IR cross-peaks distinguishes parallel-stranded and antiparallel-stranded DNA G-quadruplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120596. [PMID: 34801392 DOI: 10.1016/j.saa.2021.120596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Guanine-rich nucleic acid sequences have a tendency to form four-stranded non-canonical motifs known as G-quadruplexes. These motifs may adopt a wide range of structures characterized by size, strand orientation, guanine base conformation, and fold topology. Using three K+-bound model systems, we show that vibrational coupling between guanine C6 = O and ring modes varies between parallel-stranded and antiparallel-stranded G-quadruplexes, and that such structures can be distinguished by comparison of the polarization dependences of cross-peaks in their two-dimensional infrared (2D IR) spectra. Combined with previously defined vibrational frequency trends, this analysis reveals key features of a 30-nucleotide unimolecular variant of the Bcl-2 proximal promoter that are consistent with its reported structure. This study shows that 2D IR spectroscopy is a convenient method for analyzing G-quadruplex structures that can be applied to complex sequences where traditional high-resolution methods are limited by solubility and disorder.
Collapse
Affiliation(s)
- David A Price
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Poornima Wedamulla
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Tayler D Hill
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Taylor M Loth
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Sean D Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States.
| |
Collapse
|
18
|
Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Structural biology of cell surface receptors implicated in Alzheimer’s disease. Biophys Rev 2021; 14:233-255. [DOI: 10.1007/s12551-021-00903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
|
19
|
Dai Y, Wu Y, Lan H, Ning W, Chen F, Yan G, Cai K. Structural dynamics and vibrational feature of N-Acetyl-d-glucosamine in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119918. [PMID: 33991814 DOI: 10.1016/j.saa.2021.119918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Molecular dynamics simulations and DFT calculations were performed for the demonstration of the structural dynamics and vibrational feature of N-Acetyl-d-glucosamine (NAG) in solution phase. The interactions between NAG and solvent molecules were evaluated through spatial distribution function and radial distribution function, and the preferred conformations of NAG in aqueous solution were revealed by cluster analysis. Results from normal mode analysis show that the solvent induced structural fluctuation of NAG could be reflected in the vibrational feature of specific chromophores, thus we can evaluate the molecular structure with the help of its vibrational signature based on the built correlation between molecular structure and vibrational frequencies of specific groups.
Collapse
Affiliation(s)
- Ya'nan Dai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Yulan Wu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Huaying Lan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Wenfeng Ning
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Feng Chen
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, PR China
| | - Guiyang Yan
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, PR China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China.
| |
Collapse
|
20
|
Alperstein AM, Molnar KS, Dicke SS, Farrell KM, Makley LN, Zanni MT, Andley UP. Analysis of amyloid-like secondary structure in the Cryab-R120G knock-in mouse model of hereditary cataracts by two-dimensional infrared spectroscopy. PLoS One 2021; 16:e0257098. [PMID: 34520490 PMCID: PMC8439473 DOI: 10.1371/journal.pone.0257098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
αB-crystallin is a small heat shock protein that forms a heterooligomeric complex with αA-crystallin in the ocular lens. It is also widely distributed in tissues throughout the body and has been linked with neurodegenerative diseases such as Alzheimer's, where it is associated with amyloid fibrils. Crystallins can form amorphous aggregates in cataracts as well as more structured amyloid-like fibrils. The arginine 120 to glycine (R120G) mutation in αB-crystallin (Cryab-R120G) results in high molecular weight crystallin protein aggregates and loss of the chaperone activity of the protein in vitro, and it is associated with human hereditary cataracts and myopathy. Characterizing the amorphous (unstructured) versus the highly ordered (amyloid fibril) nature of crystallin aggregates is important in understanding their role in disease and important to developing pharmacological treatments for cataracts. We investigated protein secondary structure in wild-type (WT) and Cryab-R120G knock-in mutant mouse lenses using two-dimensional infrared (2DIR) spectroscopy, which has been used to detect amyloid-like fibrils in human lenses and measure UV radiation-induced changes in porcine lenses. Our goal was to compare the aggregated proteins in this mouse lens model to human lenses and evaluate the protein structural relevance of the Cryab-R120G knock-in mouse model to general age-related cataract disease. In the 2DIR spectra, amide I diagonal peak frequencies were red-shifted to smaller wavenumbers in mutant mouse lenses as compared to WT mouse lenses, consistent with an increase in ordered secondary structure. The cross peak frequency and intensity indicated the presence of amyloid in the mutant mouse lenses. While the diagonal and cross peak changes in location and intensity from the 2DIR spectra indicated significant structural differences between the wild type and mutant mouse lenses, these differences were smaller than those found in human lenses; thus, the Cryab-R120G knock-in mouse lenses contain less amyloid-like secondary structure than human lenses. The results of the 2DIR spectroscopy study confirm the presence of amyloid-like secondary structure in Cryab-R120G knock-in mice with cataracts and support the use of this model to study age-related cataract.
Collapse
Affiliation(s)
- Ariel M. Alperstein
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kathleen S. Molnar
- ViewPoint Therapeutics, San Francisco, California, United States of America
| | - Sidney S. Dicke
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kieran M. Farrell
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Leah N. Makley
- ViewPoint Therapeutics, San Francisco, California, United States of America
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Usha P. Andley
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
21
|
Valentine ML, Al-Mualem ZA, Baiz CR. Pump Slice Amplitudes: A Simple and Robust Method for Connecting Two-Dimensional Infrared and Fourier Transform Infrared Spectra. J Phys Chem A 2021; 125:6498-6504. [PMID: 34259508 DOI: 10.1021/acs.jpca.1c04558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultrafast two-dimensional infrared (2D IR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy are often performed in tandem, with FTIR typically used to interpret and provide hypotheses for 2D IR experiments. Comparisons between 2D IR and FTIR spectra can also be used to examine the structure and orientation in systems of coupled vibrational chromophores. The most common method for comparing 2D IR and FTIR lineshapes, the diagonal slice method, contains significant artifacts when applied to oscillators with low anharmonicities. Here, we introduce a new technique, the pump slice amplitude (PSA) method, for relating 2D IR lineshapes to FTIR lineshapes and compare PSAs against diagonal slices using theoretical and experimental spectra. We find that PSAs are significantly more similar to FTIR lineshapes than diagonal slices in systems with low anharmonicity.
Collapse
Affiliation(s)
- Mason L Valentine
- Department of Chemistry, University of Texas at Austin, Austin 78712, United States
| | - Ziareena A Al-Mualem
- Department of Chemistry, University of Texas at Austin, Austin 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin 78712, United States
| |
Collapse
|
22
|
Tumbic GW, Hossan MY, Thielges MC. Protein Dynamics by Two-Dimensional Infrared Spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:299-321. [PMID: 34314221 PMCID: PMC8713465 DOI: 10.1146/annurev-anchem-091520-091009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proteins function as ensembles of interconverting structures. The motions span from picosecond bond rotations to millisecond and longer subunit displacements. Characterization of functional dynamics on all spatial and temporal scales remains challenging experimentally. Two-dimensional infrared spectroscopy (2D IR) is maturing as a powerful approach for investigating proteins and their dynamics. We outline the advantages of IR spectroscopy, describe 2D IR and the information it provides, and introduce vibrational groups for protein analysis. We highlight example studies that illustrate the power and versatility of 2D IR for characterizing protein dynamics and conclude with a brief discussion of the outlook for biomolecular 2D IR.
Collapse
Affiliation(s)
- Goran W Tumbic
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Md Yeathad Hossan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA;
| |
Collapse
|
23
|
Rocha MA, Sprague-Piercy MA, Kwok AO, Roskamp KW, Martin RW. Chemical Properties Determine Solubility and Stability in βγ-Crystallins of the Eye Lens. Chembiochem 2021; 22:1329-1346. [PMID: 33569867 PMCID: PMC8052307 DOI: 10.1002/cbic.202000739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Indexed: 11/10/2022]
Abstract
βγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post-translational modifications that can cause age-related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid-liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high-resolution structure include dye-binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET.
Collapse
Affiliation(s)
- Megan A. Rocha
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| |
Collapse
|
24
|
Price DA, Hill TD, Hutson KA, Rightnowar BW, Moran SD. Membrane-dependent amyloid aggregation of human BAX α9 (173-192). Protein Sci 2021; 30:1072-1080. [PMID: 33641228 DOI: 10.1002/pro.4053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 11/07/2022]
Abstract
Mitochondrial outer membrane permeabilization, which is a critical step in apoptosis, is initiated upon transmembrane insertion of the C-terminal α-helix (α9) of the proapoptotic Bcl-2 family protein BAX. The isolated α9 fragment (residues 173-192) is also competent to disrupt model membranes, and the structures of its membrane-associated oligomers are of interest in understanding the potential roles of this sequence in apoptosis. Here, we used ultrafast two-dimensional infrared (2D IR) spectroscopy, thioflavin T binding, and transmission electron microscopy to show that the synthetic BAX α9 peptide (α9p) forms amyloid aggregates in aqueous environments and on the surfaces of anionic small unilamellar vesicles. Its inherent amyloidogenicity was predicted by sequence analysis, and 2D IR spectra reveal that vesicles modulate the β-sheet structures of insoluble aggregates, motivating further examination of the formation or suppression of BAX amyloids in apoptosis.
Collapse
Affiliation(s)
- David A Price
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Tayler D Hill
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Kaitlyn A Hutson
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Blaze W Rightnowar
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Sean D Moran
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| |
Collapse
|
25
|
Edington SC, Liu S, Baiz CR. Infrared spectroscopy probes ion binding geometries. Methods Enzymol 2021; 651:157-191. [PMID: 33888203 DOI: 10.1016/bs.mie.2020.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infrared (IR) spectroscopy is a well-established technique for probing the structure, behavior, and surroundings of molecules in their native environments. Its characteristics-most specifically high structural sensitivity, ready applicability to aqueous samples, and broad availability-make it a valuable enzymological technique, particularly for the interrogation of ion binding sites. While IR spectroscopy of the "garden variety" (steady state at room temperature with wild-type proteins) is versatile and powerful in its own right, the combination of IR spectroscopy with specialized experimental schemes for leveraging ultrafast time resolution, protein labeling, and other enhancements further extends this utility. This book chapter provides the fundamental physical background and literature context essential for harnessing IR spectroscopy in the general context of enzymology with specific focus on interrogation of ion binding. Studies of lanthanide ions binding to calmodulin are highlighted as illustrative examples of this process. Appropriate sample preparation, data collection, and spectral interpretation are discussed from a detail-oriented and practical perspective with the goal of facilitating the reader's rapid progression from reading words in a book to collecting and analyzing their own data in the lab.
Collapse
Affiliation(s)
- Sean C Edington
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Stephanie Liu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, United States
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
26
|
Cai K, Zheng X, Hou Y, Chen F, Yan G, Zhuang D. Deciphering the structural preference encoded in amide-I vibrations of lysine dipeptide in gas phase and in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119066. [PMID: 33091736 DOI: 10.1016/j.saa.2020.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Protein's biological function is critically associated with its structural feature, which is encoded in its amino acid sequence. For evaluation of conformational fluctuation and folding mechanism, DFT calculations were performed on the model compound - lysine dipeptide (LYSD) in gas phase to demonstrate the correlation between amide-I vibrations and secondary structure. Molecular dynamics simulations were carried out for the structural dynamics of LYSD in aqueous solution. The results show that LYSD tends form C7eq, C5, β, PPII and α conformations in the gas phase and primarily presented PPII and α conformations in aqueous solution. The obtained amide-I vibrational frequencies of LYSD conformers were assigned, thus build the correlations between amide-I probes and secondary structure of LYSD. These results provide theoretical insights into the structural feature of LYSD through amide-I vibrations, and would shed light on site specific structural prediction of polypeptides.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Fujian Province University, Ningde 352100, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China.
| | - Xuan Zheng
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Yanjun Hou
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Feng Chen
- Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Fujian Province University, Ningde 352100, China
| | - Guiyang Yan
- Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Fujian Province University, Ningde 352100, China
| | - Danling Zhuang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| |
Collapse
|
27
|
Basu A, Vaskevich A, Chuntonov L. Glutathione Self-Assembles into a Shell of Hydrogen-Bonded Intermolecular Aggregates on "Naked" Silver Nanoparticles. J Phys Chem B 2021; 125:895-906. [PMID: 33440116 DOI: 10.1021/acs.jpcb.0c10089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A detailed understanding of the molecular structure in nanoparticle ligand capping layers is crucial for their efficient incorporation into modern scientific and technological applications. Peptide ligands render the nanoparticles as biocompatible materials. Glutathione, a γ-ECG tripeptide, self-assembles into aggregates on the surface of ligand-free silver nanoparticles through intermolecular hydrogen bonding and forms a few nanometer-thick shells. Two-dimensional nonlinear infrared (2DIR) spectroscopy suggests that aggregates adopt a conformation resembling the β-sheet secondary structure. The shell thickness was evaluated with localized surface plasmon resonance spectroscopy and X-ray photoelectron spectroscopy. The amount of glutathione on the surface was obtained with spectrophotometry of a thiol-reactive probe. Our results suggest that the shell consists of ∼15 stacked molecular layers. These values correspond to the inter-sheet distances, which are significantly shorter than those in amyloid fibrils with relatively bulky side chains, but are comparable to glycine-rich silk fibrils, where the side chains are compact. The tight packing of the glutathione layers can be facilitated by hydrogen-bonded carboxylic acid dimers of glycine and the intermolecular salt bridges between the zwitterionic γ-glutamyl groups. The structure of the glutathione aggregates was studied by 2DIR spectroscopy of the amide-I vibrational modes using 13C isotope labeling of the cysteine carbonyl. Isotope dilution experiments revealed the coupling of modes forming vibrational excitons along the cysteine chain. The coupling along the γ-glutamyl exciton chain was estimated from these values. The obtained coupling strengths are slightly lower than those of native β-sheets, yet they appear large enough to point onto an ordered conformation of the peptides within the aggregate. Analysis of the excitons' anharmonicities and the strength of the transition dipole moments generally is in agreement with these observations.
Collapse
Affiliation(s)
- Arghyadeep Basu
- Schulich Faculty of Chemistry and Solid State Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alexander Vaskevich
- Department of Materials and Interfaces, and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
28
|
Tseng WH, Chen SH, Hiramatsu H. pH-controlled stacking direction of the β-strands in peptide fibrils. Sci Rep 2020; 10:22199. [PMID: 33335192 PMCID: PMC7747703 DOI: 10.1038/s41598-020-79001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Peptides provide a framework for generating functional biopolymers. In this study, the pH-dependent structural changes in the 21-29 fragment peptide of β2-microglobulin (β2m21-29) during self-aggregation, i.e., the formation of an amyloid fibril, were discussed. The β-sheet structures formed during parallel stacking under basic conditions (pH ≥ 7.7) adopted an anti-parallel stacking configuration under acidic conditions (pH ≤ 7.6). The parallel and anti-parallel β-sheets existed separately at the intermediate pH (pH = 7.6-7.7). These results were attributed to the rigidity of the β-sheets in the fibrils, which prevented the stable hydrogen bonding interactions between the parallel and anti-parallel β-sheet moieties. This observed pH dependence was ascribed to two phenomena: (i) the pH-dependent collapse of the β2m21-29 fibrils, which consisted of 16 ± 3 anti-parallel β-sheets containing a total of 2000 β-strands during the deprotonation of the NH3+ group (pKa = 8.0) of the β-strands that occurred within 0.7 ± 0.2 strands of each other and (ii) the subsequent formation of the parallel β-sheets. We propose a framework for a functional biopolymer that could alternate between the two β-sheet structures in response to pH changes.
Collapse
Affiliation(s)
- Wei-Hsuan Tseng
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Szu-Hua Chen
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, 30010, Taiwan.
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, 30010, Taiwan.
| |
Collapse
|
29
|
Antibody Fragments as Tools for Elucidating Structure-Toxicity Relationships and for Diagnostic/Therapeutic Targeting of Neurotoxic Amyloid Oligomers. Int J Mol Sci 2020; 21:ijms21238920. [PMID: 33255488 PMCID: PMC7727795 DOI: 10.3390/ijms21238920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
The accumulation of amyloid protein aggregates in tissues is the basis for the onset of diseases known as amyloidoses. Intriguingly, many amyloidoses impact the central nervous system (CNS) and usually are devastating diseases. It is increasingly apparent that neurotoxic soluble oligomers formed by amyloidogenic proteins are the primary molecular drivers of these diseases, making them lucrative diagnostic and therapeutic targets. One promising diagnostic/therapeutic strategy has been the development of antibody fragments against amyloid oligomers. Antibody fragments, such as fragment antigen-binding (Fab), scFv (single chain variable fragments), and VHH (heavy chain variable domain or single-domain antibodies) are an alternative to full-length IgGs as diagnostics and therapeutics for a variety of diseases, mainly because of their increased tissue penetration (lower MW compared to IgG), decreased inflammatory potential (lack of Fc domain), and facile production (low structural complexity). Furthermore, through the use of in vitro-based ligand selection, it has been possible to identify antibody fragments presenting marked conformational selectivity. In this review, we summarize significant reports on antibody fragments selective for oligomers associated with prevalent CNS amyloidoses. We discuss promising results obtained using antibody fragments as both diagnostic and therapeutic agents against these diseases. In addition, the use of antibody fragments, particularly scFv and VHH, in the isolation of unique oligomeric assemblies is discussed as a strategy to unravel conformational moieties responsible for neurotoxicity. We envision that advances in this field may lead to the development of novel oligomer-selective antibody fragments with superior selectivity and, hopefully, good clinical outcomes.
Collapse
|
30
|
Singh A, Khatun S, Nath Gupta A. Simultaneous Detection of Tyrosine and Structure‐Specific Intrinsic Fluorescence in the Fibrillation of Alzheimer's Associated Peptides. Chemphyschem 2020; 21:2585-2598. [DOI: 10.1002/cphc.202000587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/17/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Anurag Singh
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| | - Suparna Khatun
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| |
Collapse
|
31
|
Chakrabarty S, Maity S, Yazhini D, Ghosh A. Surface-Directed Disparity in Self-Assembled Structures of Small-Peptide l-Glutathione on Gold and Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11255-11261. [PMID: 32880182 DOI: 10.1021/acs.langmuir.0c01527] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Despite the key roles of l-glutathiones (GSHs) inbiology and nano-biotechnology, understanding their labile structures and hydrogen bond interactions with nanoparticles has posed a critical challenge to the scientific community. The structural conformation of GSH as a capping layer on gold nanoparticle (AuNP) and silver nanoparticle (AgNP) surfaces is investigated. In this report, we attempt to explore the material-dependent interaction of GSH with different spherical nanoparticle surfaces by employing Fourier transform infrared (FTIR) spectroscopy. The infrared signal of amide I of GSH is studied as a function of different materials' spherical nanoparticles with comparable size. We revealed the β-sheet secondary structure of GSH on AgNPs and the random structure on AuNPs even though both the nanoparticles have comparable shapes and sizes and belong to the same group of the periodic table. The GSH is firmly anchored on the gold and silver surface via the thiol of the cys part. However, our experimental data designate a further interaction with the AgNP surface via the carboxylic acid group of the gly- and glu- end of the molecule. It is observed that enhancement of IR absorption of amide I of GSH is pronounced by a factor of 10 on AuNP but, in contrast, on the same-sized AgNP, the suppression is perceived by a factor of 2, even though both are plasmonic materials with respect to free GSH. This study can be used as a point of reference for understanding the structural conformation of the capping layer on nanoparticle surfaces as well as surface enhancement of the IR absorption of amide I. We would like to emphasize that molecular self-assembly on the nanoparticle surfaces is definitely of very broad interest for chemists working in nearly any subdiscipline, spanning from the nanoparticle-based medicine to surface-enhanced spectroscopy to heterogeneous catalysis, etc.
Collapse
Affiliation(s)
- Suranjana Chakrabarty
- Department of Condensed Matter Physics and Materials Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Swagata Maity
- Department of Condensed Matter Physics and Materials Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Darshana Yazhini
- Department of Condensed Matter Physics and Materials Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Anup Ghosh
- Department of Condensed Matter Physics and Materials Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
32
|
Heo C, Ha T, You C, Huynh T, Lim H, Kim J, Kesama MR, Lee J, Kim TT, Lee YH. Identifying Fibrillization State of Aβ Protein via Near-Field THz Conductance Measurement. ACS NANO 2020; 14:6548-6558. [PMID: 32167289 DOI: 10.1021/acsnano.9b08572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Progressive Alzheimer's disease is correlated with the oligomerization and fibrillization of the amyloid beta (Aβ) protein. We identify the fibrillization stage of the Aβ protein through label-free near-field THz conductance measurements in a buffer solution. Frequency-dependent conductance was obtained by measuring the differential transmittance of the time-domain spectroscopy in the THz range with a molar concentration of monomer, oligomer, and fibrillar forms of the Aβ protein. Conductance at the lower frequency limit was observed to be high in monomers, reduced in oligomers, and dropped to an insulating state in fibrils and increased proportionally with the Aβ protein concentration. The monotonic decrease in the conductance at low frequency was dominated by a simple Drude component in the monomer with concentration and nonlinear conductance behaviors in the oligomer and fibril. By extracting the structural localization parameter, a dimensionless constant, with the modified Drude-Smith model, we defined a dementia quotient (DQ) value (0 < De < 1) as a discrete metric for a various Aβ proteins at a low concentration of 0.1 μmol/L; DQ = 1.0 ± 0.002 (fibril by full localization, mainly by Smith component), DQ = 0.64 ± 0.013 (oligomer by intermixed localization), and DQ = 0.0 ± 0.000 (monomer by Drude component). DQ values were discretely preserved independent of the molar concentration or buffer variation. This provides plenty of room for the label-free diagnosis of Alzheimer's disease using the near-field THz conductance measurement.
Collapse
Affiliation(s)
- Chaejeong Heo
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taewoo Ha
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Chunjae You
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thuy Huynh
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hosub Lim
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiwon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mallikarjuna Reddy Kesama
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinkee Lee
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Teun-Teun Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
33
|
Cai K, Liu J, Liu Y, Chen F, Yan G, Lin H. Application of a transparent window vibrational probe (azido probe) to the structural dynamics of model dipeptides and amyloid β-peptide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117681. [PMID: 31685425 DOI: 10.1016/j.saa.2019.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The azido asymmetric stretching motion is widely used for the elucidation of the intrinsic conformational preference and folding mechanism of protein since it has strong vibrational absorbance in the spectral transparent windows. However, the possible secondary structural disturbance induced by the insertion of azido group in the side chain of polypeptides should be carefully evaluated. Here, DFT calculation and enhanced sampling method were employed for model dipeptides with or without azido substitution, and the outcome results show that the lower potential energy basins of isolated model dipeptides are consistent with the preferred structural distributions of model dipeptides in aqueous solution. The azido asymmetric stretching frequency shows its sensitivity to the backbone configurations just like amide-I vibration does, and the azido vibration exhibits great potential as a structural reporter in the transparent window. For the evaluation of the application of azido group in biologically related system, the structural dynamics of Aβ37-42 and N3-Aβ37-42 fragments and the self-assemble process of their protofiliments in aqueous solution were demonstrated. The outcome results show that the structural fluctuations of Aβ37-42 and its protofilament in aqueous solution are quite similar with or without azido substitution, and the dewetting transitions of Aβ37-42 and N3-Aβ37-42 β-sheet layers are both complete within 30 ns and assemble into stable protofilaments. Therefore, the azido asymmetric vibrational motion is a minimally invasive structural probe and would not introduce much disturbance to the structural dynamics of polypeptides.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China.
| | - Jia Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China
| | - Ya'nan Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China
| | - Feng Chen
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, 352100, PR China
| | - Guiyang Yan
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, 352100, PR China
| | - Huiqiu Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China
| |
Collapse
|
34
|
Garcia AM, Lavendomme R, Kralj S, Kurbasic M, Bellotto O, Cringoli MC, Semeraro S, Bandiera A, De Zorzi R, Marchesan S. Self-Assembly of an Amino Acid Derivative into an Antimicrobial Hydrogel Biomaterial. Chemistry 2020; 26:1880-1886. [PMID: 31868256 DOI: 10.1002/chem.201905681] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 02/06/2023]
Abstract
N-(4-Nitrobenzoyl)-Phe self-assembled into a transparent supramolecular hydrogel, which displayed high fibroblast and keratinocyte cell viability. The compound showed a mild antimicrobial activity against E. coli both as a hydrogel and in solution. Single-crystal XRD data revealed packing details, including protonation of the C-terminus due to an apparent pKa shift, as confirmed by pH titrations. MicroRaman analysis revealed almost identical features between the gel and crystal states, although more disorder in the former. The hydrogel is thermoreversible and disassembles within a range of temperatures that can be fine-tuned by experimental conditions, such as gelator concentration. At the minimum gelling concentration of 0.63 wt %, the hydrogel disassembles in a physiological temperature range of 39-42 °C, thus opening the way to its potential use as a biomaterial.
Collapse
Affiliation(s)
- Ana M Garcia
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Roy Lavendomme
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Marina Kurbasic
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Ottavia Bellotto
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Maria C Cringoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Sabrina Semeraro
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Antonella Bandiera
- Dipartimento di Scienze della Vita, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Rita De Zorzi
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Silvia Marchesan
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
35
|
Liang C, Savinov SN, Fejzo J, Eyles SJ, Chen J. Modulation of Amyloid-β42 Conformation by Small Molecules Through Nonspecific Binding. J Chem Theory Comput 2019; 15:5169-5174. [PMID: 31476124 PMCID: PMC6783347 DOI: 10.1021/acs.jctc.9b00599] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aggregation of amyloid-β (Aβ) peptides is a crucial step in the progression of Alzheimer's disease (AD). Identifying aggregation inhibitors against AD has been a great challenge. We report an atomistic simulation study of the inhibition mechanism of two small molecules, homotaurine and scyllo-inositol, which are AD drug candidates currently under investigation. We show that both small molecules promote a conformational change of the Aβ42 monomer toward a more collapsed phase through a nonspecific binding mechanism. This finding provides atomistic-level insights into designing potential drug candidates for future AD treatments.
Collapse
Affiliation(s)
- Chungwen Liang
- Computational Modeling Core Facility, Institute for Applied Life Sciences (IALS) , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Sergey N Savinov
- Computational Modeling Core Facility, Institute for Applied Life Sciences (IALS) , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
- Department of Biochemistry and Molecular Biology , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Jasna Fejzo
- Biomolecular NMR Core Facility, Institute for Applied Life Sciences (IALS) , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Stephen J Eyles
- Mass Spectrometry Core Facility, Institute for Applied Life Sciences (IALS) , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Jianhan Chen
- Department of Biochemistry and Molecular Biology , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
- Department of Chemistry , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
36
|
Penke B, Bogár F, Paragi G, Gera J, Fülöp L. Key Peptides and Proteins in Alzheimer's Disease. Curr Protein Pept Sci 2019; 20:577-599. [PMID: 30605056 DOI: 10.2174/1389203720666190103123434] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023]
Abstract
Alzheimer's Disease (AD) is a form of progressive dementia involving cognitive impairment, loss of learning and memory. Different proteins (such as amyloid precursor protein (APP), β- amyloid (Aβ) and tau protein) play a key role in the initiation and progression of AD. We review the role of the most important proteins and peptides in AD pathogenesis. The structure, biosynthesis and physiological role of APP are shortly summarized. The details of trafficking and processing of APP to Aβ, the cytosolic intracellular Aβ domain (AICD) and small soluble proteins are shown, together with other amyloid-forming proteins such as tau and α-synuclein (α-syn). Hypothetic physiological functions of Aβ are summarized. The mechanism of conformational change, the formation and the role of neurotoxic amyloid oligomeric (oAβ) are shown. The fibril formation process and the co-existence of different steric structures (U-shaped and S-shaped) of Aβ monomers in mature fibrils are demonstrated. We summarize the known pathogenic and non-pathogenic mutations and show the toxic interactions of Aβ species after binding to cellular receptors. Tau phosphorylation, fibrillation, the molecular structure of tau filaments and their toxic effect on microtubules are shown. Development of Aβ and tau imaging in AD brain and CSF as well as blood biomarkers is shortly summarized. The most probable pathomechanisms of AD including the toxic effects of oAβ and tau; the three (biochemical, cellular and clinical) phases of AD are shown. Finally, the last section summarizes the present state of Aβ- and tau-directed therapies and future directions of AD research and drug development.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary.,MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary.,Institute of Physics, University of Pécs, H-7624 Pecs, Ifjusag utja 6, Hungary
| | - János Gera
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| |
Collapse
|
37
|
Cai K, Zheng X, Liu J, Du F, Yan G, Zhuang D, Yan S. Mapping the amide-I vibrations of model dipeptides with secondary structure sensitivity and amino acid residue specificity, and its application to amyloid β-peptide in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:391-400. [PMID: 31059891 DOI: 10.1016/j.saa.2019.04.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Vibrational spectroscopy has been known as particularly well-suited for deciphering the polypeptide's structure. To decode structural information encoded in IR spectra, we developed amide-I frequency maps on the basis of model dipeptides to correlate the amide-I frequency of interest to the combination of the calculated secondary structure dependent amide-I frequency by using DFT method and the electrostatic potentials that projected onto the amide unit from the micro-environment within molecular mechanics force field. The constructed maps were applied to model dipeptides and amyloid β-peptide fragment (Aβ25-35). The dipeptide specified map (DS map) and the hybrid map (HYB map) predicted amide-I bands of Aβ25-35 in solution satisfactorily reproduce experimental observation, and indicate the preference of forming β-sheet and random coil structure for Aβ25-35 in D2O just as the results of cluster analysis suggested. These maps with secondary structural sensitivity and amino acid residue specificity open up a way for the interpretation of amide-I vibrations and show their potentials in the understanding of molecular structure of polypeptides in solution.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China; Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, PR China.
| | - Xuan Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Jia Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Fenfen Du
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Guiyang Yan
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, PR China
| | - Danling Zhuang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| | - Siyi Yan
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, PR China
| |
Collapse
|
38
|
Ostrander JS, Lomont JP, Rich KL, Saraswat V, Feingold BR, Petti MK, Birdsall ER, Arnold MS, Zanni MT. Monolayer Sensitivity Enables a 2D IR Spectroscopic Immuno-biosensor for Studying Protein Structures: Application to Amyloid Polymorphs. J Phys Chem Lett 2019; 10:3836-3842. [PMID: 31246039 PMCID: PMC6823637 DOI: 10.1021/acs.jpclett.9b01267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Immunosensors use antibodies to detect and quantify biomarkers of disease, though the sensors often lack structural information. We create a surface-sensitive two-dimensional infrared (2D IR) spectroscopic immunosensor for studying protein structures. We tether antibodies to a plasmonic surface, flow over a solution of amyloid proteins, and measure the 2D IR spectra. The 2D IR spectra provide a global assessment of antigen structure, and isotopically labeled proteins give residue-specific structural information. We report the 2D IR spectra of fibrils and monomers using a polyclonal antibody that targets human islet amyloid polypeptide (hIAPP). We observe two fibrillar polymorphs differing in their structure at the G24 residue, which supports the hypothesis that hIAPP polymorphs form from a common oligomeric intermediate. This work provides insight into the structure of hIAPP, establishes a new method for studying protein structures using 2D IR spectroscopy, and creates a spectroscopic immunoassay applicable for studying a wide range of biomarkers.
Collapse
Affiliation(s)
- Joshua S. Ostrander
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Justin P. Lomont
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kacie L. Rich
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Vivek Saraswat
- Department of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Benjamin R. Feingold
- Department of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Megan K. Petti
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Erin R. Birdsall
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Michael S. Arnold
- Department of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
39
|
Xu Y, Safari MS, Ma W, Schafer NP, Wolynes PG, Vekilov PG. Steady, Symmetric, and Reversible Growth and Dissolution of Individual Amyloid-β Fibrils. ACS Chem Neurosci 2019; 10:2967-2976. [PMID: 31099555 DOI: 10.1021/acschemneuro.9b00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oligomers and fibrils of the amyloid-β (Aβ) peptide are implicated in the pathology of Alzheimer's disease. Here, we monitor the growth of individual Aβ40 fibrils by time-resolved in situ atomic force microscopy and thereby directly measure fibril growth rates. The measured growth rates in a population of fibrils that includes both single protofilaments and bundles of filaments are independent of the fibril thickness, indicating that cooperation between adjacent protofilaments does not affect incorporation of monomers. The opposite ends of individual fibrils grow at similar rates. In contrast to the "stop-and-go" kinetics that has previously been observed for amyloid-forming peptides, growth and dissolution of the Aβ40 fibrils are relatively steady for peptide concentration of 0-10 μM. The fibrils readily dissolve in quiescent peptide-free solutions at a rate that is consistent with the microscopic reversibility of growth and dissolution. Importantly, the bimolecular rate coefficient for the association of a monomer to the fibril end is significantly smaller than the diffusion limit, implying that the transition state for incorporation of a monomer into a fibril is associated with a relatively high free energy.
Collapse
Affiliation(s)
- Yuechuan Xu
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Mohammad S. Safari
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Wenchuan Ma
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Nicholas P. Schafer
- Center for Theoretical Biological Physics, Rice University, P.O. Box 1892, MS 654, Houston, Texas 77251-1892, United States
- Department of Chemistry, Rice University, P.O. Box 1892, MS 60, Houston, Texas 77251-1892, United States
| | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Rice University, P.O. Box 1892, MS 654, Houston, Texas 77251-1892, United States
- Department of Chemistry, Rice University, P.O. Box 1892, MS 60, Houston, Texas 77251-1892, United States
| | - Peter G. Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, Texas 77204-5003, United States
| |
Collapse
|
40
|
Ghosh A, Prasad AK, Chuntonov L. Two-Dimensional Infrared Spectroscopy Reveals Molecular Self-Assembly on the Surface of Silver Nanoparticles. J Phys Chem Lett 2019; 10:2481-2486. [PMID: 30978284 DOI: 10.1021/acs.jpclett.9b00530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The conformation of molecules, peptides, and proteins, self-assembled into structured monolayers on the surface of metal nanoparticles (NPs), can strongly affect their properties and use in chemical or nanobiomedical applications. Elucidating molecular conformations on the NP surface is highly challenging, and the microscopic details mostly remain elusive. Using polarization-selective third-order two-dimensional ultrafast infrared spectroscopy, we revealed the highly ordered intermolecular structure of γ-tripeptide glutathione on the surface of silver NPs in aqueous solution. Glutathione is an antioxidant thiol abundant in living cells; it is extensively used in NP chemistry and related research. We identified conditions where the interaction of glutathione with the NP surface facilitates formation of a β-sheet-like structure enclosing the NPs. A spectroscopic signature associated with the assembly of β-sheets into an amyloid fibril-like structure was also observed. Remarkably, the interaction with the metal surface promotes formation of a fibril-like structure by a small peptide involving only two amino acids.
Collapse
Affiliation(s)
- Anup Ghosh
- Schulich Faculty of Chemistry and Solid State Institute , Technion - Israel Institute of Technology , Haifa 3200003 , Israel
| | - Amit K Prasad
- Schulich Faculty of Chemistry and Solid State Institute , Technion - Israel Institute of Technology , Haifa 3200003 , Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute , Technion - Israel Institute of Technology , Haifa 3200003 , Israel
| |
Collapse
|
41
|
Ami D, Mereghetti P, Foli A, Tasaki M, Milani P, Nuvolone M, Palladini G, Merlini G, Lavatelli F, Natalello A. ATR-FTIR Spectroscopy Supported by Multivariate Analysis for the Characterization of Adipose Tissue Aspirates from Patients Affected by Systemic Amyloidosis. Anal Chem 2019; 91:2894-2900. [PMID: 30676723 DOI: 10.1021/acs.analchem.8b05008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Deposition of misfolded proteins as extracellular amyloid aggregates is the pathological hallmark of systemic amyloidoses. Subcutaneous fat acquired by fine needle aspiration is the preferred screening tissue in suspected patients. In this study we employed Fourier transform infrared (FTIR) spectroscopy in attenuated total reflection (ATR) to investigate human abdominal fat aspirates with the aim of detecting disease-related changes in the molecular structure and composition of the tissue and exploiting the potentiality of the method to discriminate between amyloid-positive and -negative samples. The absorption and second-derivative spectra of Congo Red (CR) positive and CR-negative specimens were analyzed by three multivariate methods in four spectral regions. The proposed ATR-FTIR method is label-free, rapid, and relatively inexpensive and requires minimal sample preparation. We found that the ATR-FTIR approach can differentiate fat aspirates containing amyloid deposits from control specimens with high sensitivity and specificity, both at 100 [89-100]%. It is worth noting that the wavenumbers most important for discrimination indicate that changes both in the protein conformation and in resident lipids are intrinsic features of affected subcutaneous fat in comparison with the CR-negative controls. In this proof of concept study, we show that this approach could be useful for assessing tissue amyloid aggregates and for acquiring novel knowledge of the molecular bases of the disease.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Paolo Mereghetti
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Andrea Foli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Masayoshi Tasaki
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy.,Department of Morphological and Physiological Sciences, Graduate School of Health Sciences , Kumamoto University , 4-24-1 Kuhonji , Kumamoto 862-0976 , Japan.,Department of Neurology, Graduate School of Medical Sciences , Kumamoto University , 1-1-1 Honjo , Kumamoto 860-0811 , Japan
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Mario Nuvolone
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| |
Collapse
|
42
|
Vibrational Approach to the Dynamics and Structure of Protein Amyloids. Molecules 2019; 24:molecules24010186. [PMID: 30621325 PMCID: PMC6337179 DOI: 10.3390/molecules24010186] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Amyloid diseases, including neurodegenerative diseases such as Alzheimer’s and Parkinson’s, are linked to a poorly understood progression of protein misfolding and aggregation events that culminate in tissue-selective deposition and human pathology. Elucidation of the mechanistic details of protein aggregation and the structural features of the aggregates is critical for a comprehensive understanding of the mechanisms of protein oligomerization and fibrillization. Vibrational spectroscopies, such as Fourier transform infrared (FTIR) and Raman, are powerful tools that are sensitive to the secondary structure of proteins and have been widely used to investigate protein misfolding and aggregation. We address the application of the vibrational approaches in recent studies of conformational dynamics and structural characteristics of protein oligomers and amyloid fibrils. In particular, introduction of isotope labelled carbonyl into a peptide backbone, and incorporation of the extrinsic unnatural amino acids with vibrational moieties on the side chain, have greatly expanded the ability of vibrational spectroscopy to obtain site-specific structural and dynamic information. The applications of these methods in recent studies of protein aggregation are also reviewed.
Collapse
|
43
|
Baronio CM, Baldassarre M, Barth A. Insight into the internal structure of amyloid-β oligomers by isotope-edited Fourier transform infrared spectroscopy. Phys Chem Chem Phys 2019; 21:8587-8597. [DOI: 10.1039/c9cp00717b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isotope-edited infrared spectroscopy reveals the structural unit of amyloid-β oligomers.
Collapse
Affiliation(s)
| | | | - Andreas Barth
- Department of Biochemistry and Biophysics
- Stockholm University
- Sweden
| |
Collapse
|
44
|
Recent Advances by In Silico and In Vitro Studies of Amyloid-β 1-42 Fibril Depicted a S-Shape Conformation. Int J Mol Sci 2018; 19:ijms19082415. [PMID: 30115846 PMCID: PMC6121414 DOI: 10.3390/ijms19082415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
The amyloid-β 1-42 (Aβ1-42) peptide is produced by proteolytic cleavage of the amyloid precursor protein (APP) by sequential reactions that are catalyzed by γ and β secretases. Aβ1-42, together with the Tau protein are two principal hallmarks of Alzheimer's disease (AD) that are related to disease genesis and progression. Aβ1-42 possesses a higher aggregation propensity, and it is able to form fibrils via nucleated fibril formation. To date, there are compounds available that prevent Aβ1-42 aggregation, but none have been successful in clinical trials, possibly because the Aβ1-42 structure and aggregation mechanisms are not thoroughly understood. New molecules have been designed, employing knowledge of the Aβ1-42 structure and are based on preventing or breaking the ionic interactions that have been proposed for formation of the Aβ1-42 fibril U-shaped structure. Recently, a new Aβ1-42 fibril S-shaped structure was reported that, together with its aggregation and catalytic properties, could be helpful in the design of new inhibitor molecules. Therefore, in silico and in vitro methods have been employed to analyze the Aβ1-42 fibril S-shaped structure and its aggregation to obtain more accurate Aβ1-42 oligomerization data for the design and evaluation of new molecules that can prevent the fibrillation process.
Collapse
|
45
|
Martial B, Lefèvre T, Auger M. Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR. Biophys Rev 2018; 10:1133-1149. [PMID: 29855812 PMCID: PMC6082320 DOI: 10.1007/s12551-018-0427-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
It is well established that amyloid proteins play a primary role in neurodegenerative diseases. Alzheimer's, Parkinson's, type II diabetes, and Creutzfeldt-Jakob's diseases are part of a wider family encompassing more than 50 human pathologies related to aggregation of proteins. Although this field of research is thoroughly investigated, several aspects of fibrillization remain misunderstood, which in turn slows down, or even impedes, advances in treating and curing amyloidoses. To solve this problem, several research groups have chosen to focus on short fragments of amyloid proteins, sequences that have been found to be of great importance for the amyloid formation process. Studying short peptides allows bypassing the complexity of working with full-length proteins and may provide important information relative to critical segments of amyloid proteins. To this end, efficient biophysical tools are required. In this review, we focus on two essential types of spectroscopic techniques, i.e., vibrational spectroscopy and its derivatives (conventional Raman scattering, deep-UV resonance Raman (DUVRR), Raman optical activity (ROA), surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS), infrared (IR) absorption spectroscopy, vibrational circular dichroism (VCD)) and solid-state nuclear magnetic resonance (ssNMR). These techniques revealed powerful to provide a better atomic and molecular comprehension of the amyloidogenic process and fibril structure. This review aims at underlining the information that these techniques can provide and at highlighting their strengths and weaknesses when studying amyloid fragments. Meaningful examples from the literature are provided for each technique, and their complementarity is stressed for the kinetic and structural characterization of amyloid fibril formation.
Collapse
Affiliation(s)
- Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|