1
|
Pagano L, Pennacchietti V, Malagrinò F, Di Felice M, Toso J, Puglisi E, Gianni S, Toto A. Folding and Binding Kinetics of the Tandem of SH2 Domains from SHP2. Int J Mol Sci 2024; 25:6566. [PMID: 38928272 PMCID: PMC11203950 DOI: 10.3390/ijms25126566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The SH2 domains of SHP2 play a crucial role in determining the function of the SHP2 protein. While the folding and binding properties of the isolated NSH2 and CSH2 domains have been extensively studied, there is limited information about the tandem SH2 domains. This study aims to elucidate the folding and binding kinetics of the NSH2-CSH2 tandem domains of SHP2 through rapid kinetic experiments, complementing existing data on the isolated domains. The results indicate that while the domains generally fold and unfold independently, acidic pH conditions induce complex scenarios involving the formation of a misfolded intermediate. Furthermore, a comparison of the binding kinetics of isolated NSH2 and CSH2 domains with the NSH2-CSH2 tandem domains, using peptides that mimic specific portions of Gab2, suggests a dynamic interplay between NSH2 and CSH2 in binding Gab2 that modulate the microscopic association rate constant of the binding reaction. These findings, discussed in the context of previous research on the NSH2 and CSH2 domains, enhance our understanding of the function of the SH2 domain tandem of SHP2.
Collapse
Affiliation(s)
- Livia Pagano
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (V.P.); (M.D.F.); (J.T.); (E.P.); (S.G.)
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (V.P.); (M.D.F.); (J.T.); (E.P.); (S.G.)
| | - Francesca Malagrinò
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e Dell’ambiente, Università dell’Aquila, Piazzale Salvatore Tommasi 1, Coppito, 67010 L’Aquila, Italy;
| | - Mariana Di Felice
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (V.P.); (M.D.F.); (J.T.); (E.P.); (S.G.)
| | - Julian Toso
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (V.P.); (M.D.F.); (J.T.); (E.P.); (S.G.)
| | - Elena Puglisi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (V.P.); (M.D.F.); (J.T.); (E.P.); (S.G.)
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (V.P.); (M.D.F.); (J.T.); (E.P.); (S.G.)
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Rome, Italy; (L.P.); (V.P.); (M.D.F.); (J.T.); (E.P.); (S.G.)
| |
Collapse
|
2
|
Bhatia S, Udgaonkar JB. Understanding the heterogeneity intrinsic to protein folding. Curr Opin Struct Biol 2024; 84:102738. [PMID: 38041993 DOI: 10.1016/j.sbi.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023]
Abstract
Relating the native fold of a protein to its amino acid sequence remains a fundamental problem in biology. While computer algorithms have demonstrated recently their prowess in predicting what structure a particular amino acid sequence will fold to, an understanding of how and why a specific protein fold is achieved remains elusive. A major challenge is to define the role of conformational heterogeneity during protein folding. Recent experimental studies, utilizing time-resolved FRET, hydrogen-exchange coupled to mass spectrometry, and single-molecule force spectroscopy, often in conjunction with simulation, have begun to reveal how conformational heterogeneity evolves during folding, and whether an intermediate ensemble of defined free energy consists of different sub-populations of molecules that may differ significantly in conformation, energy and entropy.
Collapse
Affiliation(s)
- Sandhya Bhatia
- Department of Biophysics, Howard Hughes Medical Institute UT Southwestern Medical Center, Dallas 75390, United States. https://twitter.com/Sandhyabhatia_5
| | - Jayant B Udgaonkar
- Department of Biology, Indian Institute of Science Education and Research Pune, Pashan, Pune 41008, India.
| |
Collapse
|
3
|
Michel F, Romero‐Romero S, Höcker B. Retracing the evolution of a modern periplasmic binding protein. Protein Sci 2023; 32:e4793. [PMID: 37788980 PMCID: PMC10601554 DOI: 10.1002/pro.4793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Investigating the evolution of structural features in modern multidomain proteins helps to understand their immense diversity and functional versatility. The class of periplasmic binding proteins (PBPs) offers an opportunity to interrogate one of the main processes driving diversification: the duplication and fusion of protein sequences to generate new architectures. The symmetry of their two-lobed topology, their mechanism of binding, and the organization of their operon structure led to the hypothesis that PBPs arose through a duplication and fusion event of a single common ancestor. To investigate this claim, we set out to reverse the evolutionary process and recreate the structural equivalent of a single-lobed progenitor using ribose-binding protein (RBP) as our model. We found that this modern PBP can be deconstructed into its lobes, producing two proteins that represent possible progenitor halves. The isolated halves of RBP are well folded and monomeric proteins, albeit with a lower thermostability, and do not retain the original binding function. However, the two entities readily form a heterodimer in vitro and in-cell. The x-ray structure of the heterodimer closely resembles the parental protein. Moreover, the binding function is fully regained upon formation of the heterodimer with a ligand affinity similar to that observed in the modern RBP. This highlights how a duplication event could have given rise to a stable and functional PBP-like fold and provides insights into how more complex functional structures can evolve from simpler molecular components.
Collapse
Affiliation(s)
- Florian Michel
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| | | | - Birte Höcker
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
4
|
Rothfuss MT, Becht DC, Zeng B, McClelland LJ, Yates-Hansen C, Bowler BE. High-Accuracy Prediction of Stabilizing Surface Mutations to the Three-Helix Bundle, UBA(1), with EmCAST. J Am Chem Soc 2023; 145:22979-22992. [PMID: 37815921 PMCID: PMC10626973 DOI: 10.1021/jacs.3c04966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The accurate modeling of energetic contributions to protein structure is a fundamental challenge in computational approaches to protein analysis and design. We describe a general computational method, EmCAST (empirical Cα stabilization), to score and optimize the sequence to the structure in proteins. The method relies on an empirical potential derived from the database of the Cα dihedral angle preferences for all possible four-residue sequences, using the data available in the Protein Data Bank. Our method produces stability predictions that naturally correlate one-to-one with the experimental results for solvent-exposed mutation sites. EmCAST predicted four mutations that increased the stability of a three-helix bundle, UBA(1), from 2.4 to 4.8 kcal/mol by optimizing residues in both helices and turns. For a set of eight variants, the predicted and experimental stabilizations correlate very well (R2 = 0.97) with a slope near 1 and with a 0.16 kcal/mol standard error for EmCAST predictions. Tests against literature data for the stability effects of surface-exposed mutations show that EmCAST outperforms the existing stability prediction methods. UBA(1) variants were crystallized to verify and analyze their structures at an atomic resolution. Thermodynamic and kinetic folding experiments were performed to determine the magnitude and mechanism of stabilization. Our method has the potential to enable the rapid, rational optimization of natural proteins, expand the analysis of the sequence/structure relationship, and supplement the existing protein design strategies.
Collapse
Affiliation(s)
- Michael T. Rothfuss
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Dustin C. Becht
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Baisen Zeng
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Levi J. McClelland
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States
| | - Cindee Yates-Hansen
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| |
Collapse
|
5
|
Vergara R, Berrocal T, Juárez Mejía EI, Romero-Romero S, Velázquez-López I, Pulido NO, López Sanchez HA, Silva DA, Costas M, Rodríguez-Romero A, Rodríguez-Sotres R, Sosa-Peinado A, Fernández-Velasco DA. Thermodynamic and kinetic analysis of the LAO binding protein and its isolated domains reveal non-additivity in stability, folding and function. FEBS J 2023; 290:4496-4512. [PMID: 37178351 DOI: 10.1111/febs.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
Substrate-binding proteins (SBPs) are used by organisms from the three domains of life for transport and signalling. SBPs are composed of two domains that collectively trap ligands with high affinity and selectivity. To explore the role of the domains and the integrity of the hinge region between them in the function and conformation of SBPs, here, we describe the ligand binding, conformational stability and folding kinetics of the Lysine Arginine Ornithine (LAO) binding protein from Salmonella thiphimurium and constructs corresponding to its two independent domains. LAO is a class II SBP formed by a continuous and a discontinuous domain. Contrary to the expected behaviour based on their connectivity, the discontinuous domain shows a stable native-like structure that binds l-arginine with moderate affinity, whereas the continuous domain is barely stable and shows no detectable ligand binding. Regarding folding kinetics, studies of the entire protein revealed the presence of at least two intermediates. While the unfolding and refolding of the continuous domain exhibited only a single intermediate and simpler and faster kinetics than LAO, the folding mechanism of the discontinuous domain was complex and involved multiple intermediates. These findings suggest that in the complete protein the continuous domain nucleates folding and that its presence funnels the folding of the discontinuous domain avoiding nonproductive interactions. The strong dependence of the function, stability and folding pathway of the lobes on their covalent association is most likely the result of the coevolution of both domains as a single unit.
Collapse
Affiliation(s)
- Renan Vergara
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tania Berrocal
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Eva Isela Juárez Mejía
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Department of Biochemistry, University of Bayreuth, Germany
| | - Isabel Velázquez-López
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Nancy O Pulido
- Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Haven A López Sanchez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniel-Adriano Silva
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Rogelio Rodríguez-Sotres
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Sosa-Peinado
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
6
|
Santorelli D, Marcocci L, Pennacchietti V, Nardella C, Diop A, Pietrangeli P, Pagano L, Toto A, Malagrinò F, Gianni S. Understanding the molecular basis of folding cooperativity through a comparative analysis of a multidomain protein and its isolated domains. J Biol Chem 2023; 299:102983. [PMID: 36739950 PMCID: PMC10017356 DOI: 10.1016/j.jbc.2023.102983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Although cooperativity is a well-established and general property of folding, our current understanding of this feature in multidomain folding is still relatively limited. In fact, there are contrasting results indicating that the constituent domains of a multidomain protein may either fold independently on each other or exhibit interdependent supradomain phenomena. To address this issue, here we present the comparative analysis of the folding of a tandem repeat protein, comprising two contiguous PDZ domains, in comparison to that of its isolated constituent domains. By analyzing in detail the equilibrium and kinetics of folding at different experimental conditions, we demonstrate that despite each of the PDZ domains in isolation being capable of independent folding, at variance with previously characterized PDZ tandem repeats, the full-length construct folds and unfolds as a single cooperative unit. By exploiting quantitatively, the comparison of the folding of the tandem repeat to those observed for its constituent domains, as well as by characterizing a truncated variant lacking a short autoinhibitory segment, we successfully rationalize the molecular basis of the observed cooperativity and attempt to infer some general conclusions for multidomain systems.
Collapse
Affiliation(s)
- Daniele Santorelli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Lucia Marcocci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Awa Diop
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Paola Pietrangeli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Francesca Malagrinò
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
7
|
Liu Z, Thirumalai D. Residue-Dependent Transition Temperatures and Denaturant Midpoints in the Folding of a Multidomain Protein. J Phys Chem B 2022; 126:10684-10688. [PMID: 36512486 DOI: 10.1021/acs.jpcb.2c07093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a consequence of the finite size of globular proteins, it is expected that there should be dispersions in the global melting temperature (Tm) and the denaturation midpoint (Cm). Thermodynamic considerations dictate that the dispersions, ΔTm in Tm, and ΔCm in Cm, should decrease with N, the number of residues in the protein. We performed coarse-grained simulations of the self-organized polymer (SOP) model of the multidomain protein adenylate kinase (ADK) with N = 214 in order to calculate thermal and denaturation unfolding titration curves. The results show that ΔTm/Tm and ΔCm/Cm are nonzero and follow the previously established ( Phys. Rev. Lett. 2004, 93, 268107) thermodynamic 1/N scaling for proteins accurately. For ADK, the dispersions are small (≈0.004), which implies that the melting temperature is more or less unique, which is unlike in BBL (N = 40) where ΔTm/Tm ≈ 0.03.
Collapse
Affiliation(s)
- Zhenxing Liu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Liu Z, Thirumalai D. Cooperativity and Folding Kinetics in a Multidomain Protein with Interwoven Chain Topology. ACS CENTRAL SCIENCE 2022; 8:763-774. [PMID: 35756371 PMCID: PMC9228575 DOI: 10.1021/acscentsci.2c00140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Although a large percentage of eukaryotic proteomes consist of proteins with multiple domains, not much is known about their assembly mechanism, especially those with intricate native state architectures. Some have a complex topology in which the structural elements along the sequence are interwoven in such a manner that the domains cannot be separated by cutting at any location along the sequence. Such proteins are multiply connected multidomain proteins (MMPs) with the three-domain (NMP, LID, and CORE) phosphotransferase enzyme adenylate kinase (ADK) being an example. We devised a coarse-grained model to simulate ADK folding initiated by changing either the temperature or guanidinium chloride (GdmCl) concentration. The simulations reproduce the experimentally measured melting temperatures (associated with two equilibrium transitions), FRET efficiency as a function of GdmCl concentration, and the folding times quantitatively. Although the NMP domain orders independently, cooperative interactions between the LID and the CORE domains are required for complete assembly of the enzyme. Kinetic simulations show that, on the collapse time scale, multiple interconnected metastable states are populated, attesting to the folding heterogeneity. The network of kinetically connected states reveals that the CORE domain folds only after the NMP and LID domains, reflecting the interwoven nature of the chain topology.
Collapse
Affiliation(s)
- Zhenxing Liu
- Department
of Physics, Beijing Normal University, Beijing 100875, China
| | - D. Thirumalai
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United
States
| |
Collapse
|
9
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
10
|
The folding and misfolding mechanisms of multidomain proteins. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Bartels K, Lasitza‐Male T, Hofmann H, Löw C. Single-Molecule FRET of Membrane Transport Proteins. Chembiochem 2021; 22:2657-2671. [PMID: 33945656 PMCID: PMC8453700 DOI: 10.1002/cbic.202100106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Indexed: 12/31/2022]
Abstract
Uncovering the structure and function of biomolecules is a fundamental goal in structural biology. Membrane-embedded transport proteins are ubiquitous in all kingdoms of life. Despite structural flexibility, their mechanisms are typically studied by ensemble biochemical methods or by static high-resolution structures, which complicate a detailed understanding of their dynamics. Here, we review the recent progress of single molecule Förster Resonance Energy Transfer (smFRET) in determining mechanisms and timescales of substrate transport across membranes. These studies do not only demonstrate the versatility and suitability of state-of-the-art smFRET tools for studying membrane transport proteins but they also highlight the importance of membrane mimicking environments in preserving the function of these proteins. The current achievements advance our understanding of transport mechanisms and have the potential to facilitate future progress in drug design.
Collapse
Affiliation(s)
- Kim Bartels
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Tanya Lasitza‐Male
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Hagen Hofmann
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| |
Collapse
|
12
|
Agrawal S, Govind Kumar V, Gundampati RK, Moradi M, Kumar TKS. Characterization of the structural forces governing the reversibility of the thermal unfolding of the human acidic fibroblast growth factor. Sci Rep 2021; 11:15579. [PMID: 34341408 PMCID: PMC8329156 DOI: 10.1038/s41598-021-95050-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Human acidic fibroblast growth factor (hFGF1) is an all beta-sheet protein that is involved in the regulation of key cellular processes including cell proliferation and wound healing. hFGF1 is known to aggregate when subjected to thermal unfolding. In this study, we investigate the equilibrium unfolding of hFGF1 using a wide array of biophysical and biochemical techniques. Systematic analyses of the thermal and chemical denaturation data on hFGF1 variants (Q54P, K126N, R136E, K126N/R136E, Q54P/K126N, Q54P/R136E, and Q54P/K126N/R136E) indicate that nullification of charges in the heparin-binding pocket can significantly increase the stability of wtFGF1. Triple variant (Q54P/K126N/R136E) was found to be the most stable of all the hFGF1 variants studied. With the exception of triple variant, thermal unfolding of wtFGF1 and the other variants is irreversible. Thermally unfolded triple variant refolds completely to its biologically native conformation. Microsecond-level molecular dynamic simulations reveal that a network of hydrogen bonds and salt bridges linked to Q54P, K126N, and R136E mutations, are responsible for the high stability and reversibility of thermal unfolding of the triple variant. In our opinion, the findings of the study provide valuable clues for the rational design of a stable hFGF1 variant that exhibits potent wound healing properties.
Collapse
Affiliation(s)
- Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
13
|
Pagano L, Malagrinò F, Visconti L, Troilo F, Pennacchietti V, Nardella C, Toto A, Gianni S. Probing the Effects of Local Frustration in the Folding of a Multidomain Protein. J Mol Biol 2021; 433:167087. [PMID: 34089717 DOI: 10.1016/j.jmb.2021.167087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022]
Abstract
Our current knowledge of protein folding is primarily based on experimental data obtained from isolated domains. In fact, because of their complexity, multidomain proteins have been elusive to the experimental characterization. Thus, the folding of a domain in isolation is generally assumed to resemble what should be observed for more complex structural architectures. Here we compared the folding mechanism of a protein domain in isolation and in the context of its supramodular multidomain structure. By carrying out an extensive mutational analysis we illustrate that while the early events of folding are malleable and influenced by the absence/presence of the neighboring structures, the late events appear to be more robust. These effects may be explained by analyzing the local frustration patterns of the domain, providing critical support for the funneled energy landscape theory of protein folding, and highlighting the role of protein frustration in sculpting the early events of the reaction.
Collapse
Affiliation(s)
- Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Valeria Pennacchietti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| |
Collapse
|
14
|
The road less traveled in protein folding: evidence for multiple pathways. Curr Opin Struct Biol 2020; 66:83-88. [PMID: 33220553 DOI: 10.1016/j.sbi.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/11/2020] [Indexed: 11/23/2022]
Abstract
Free Energy Landscape theory of Protein Folding, introduced over 20 years ago, implies that a protein has many paths to the folded conformation with the lowest free energy. Despite the knowledge in principle, it has been remarkably hard to detect such pathways. The lack of such observations is primarily due to the fact that no one experimental technique can detect many parts of the protein simultaneously with the time resolution necessary to see such differences in paths. However, recent technical developments and employment of multiple experimental probes and folding prompts have illuminated multiple folding pathways in a number of proteins that had all previously been described with a single path.
Collapse
|
15
|
Hidden kinetic traps in multidomain folding highlight the presence of a misfolded but functionally competent intermediate. Proc Natl Acad Sci U S A 2020; 117:19963-19969. [PMID: 32747559 PMCID: PMC7443948 DOI: 10.1073/pnas.2004138117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Much of our current knowledge on protein folding is based on work focused on isolated domains. In this study, using a combination of NMR and kinetic experiments, we depict the folding pathway of a multidomain construct comprising two PDZ domains in tandem, belonging to the protein Whirlin. We demonstrate the presence of a misfolded intermediate that competes with productive folding. Interestingly, we show that, unexpectedly, this misfolded state retains the native-like functional ability to bind its physiological ligand, representing a clear example of a functionally competent misfolded state. On the basis of these results and a comparative analysis of the amino acidic sequences of Whirlin from different species, we propose a possible physiological role of the misfolded intermediate. Although more than 75% of the proteome is composed of multidomain proteins, current knowledge of protein folding is based primarily on studies of isolated domains. In this work, we describe the folding mechanism of a multidomain tandem construct comprising two distinct covalently bound PDZ domains belonging to a protein called Whirlin, a scaffolding protein of the hearing apparatus. In particular, via a synergy between NMR and kinetic experiments, we demonstrate the presence of a misfolded intermediate that competes with productive folding. In agreement with the view that tandem domain swapping is a potential source of transient misfolding, we demonstrate that such a kinetic trap retains native-like functional activity, as shown by the preserved ability to bind its physiological ligand. Thus, despite the general knowledge that protein misfolding is intimately associated with dysfunction and diseases, we provide a direct example of a functionally competent misfolded state. Remarkably, a bioinformatics analysis of the amino acidic sequence of Whirlin from different species suggests that the tendency to perform tandem domain swapping between PDZ1 and PDZ2 is highly conserved, as demonstrated by their unexpectedly high sequence identity. On the basis of these observations, we discuss on a possible physiological role of such misfolded intermediate.
Collapse
|
16
|
Vignesh R, Aradhyam GK. A Change in Domain Cooperativity Drives the Function of Calnuc. Biochemistry 2020; 59:2507-2517. [PMID: 32543177 DOI: 10.1021/acs.biochem.0c00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
With the increasing incidence of neurodegenerative disorders, there is an urgent need to understand the protein folding process. Examining the folding process of multidomain proteins remains a prime challenge, as their complex conformational dynamics make them highly susceptible to misfolding and/or aggregation. The presence of multiple domains in a protein can lead to interaction between the partially folded domains, thereby driving misfolding and/or aggregation. Calnuc is one such multidomain protein for which Ca2+ binding plays a pivotal role in governing its structural dynamics and stability and, presumably, in directing its interactions with other proteins. We demonstrate differential structural dynamics between the Ca2+-free and Ca2+-bound forms of calnuc. In the absence of Ca2+, full-length calnuc displays equilibrium structural transitions with four intermediate states, reporting a sum of the behavioral properties of its individual domains. Fragment-based studies illustrate the sequential events of structure adoption proceeding in the following order: EF domain followed by the NT and LZ domains in the apo state. On the other hand, Ca2+ binding increases domain cooperativity and enables the protein to fold as a single unit. Single-tryptophan mutant proteins, designed in a domain-dependent manner, confirm an increase in the number of interdomain interactions in the Ca2+-bound form as compared to the Ca2+-free state of the protein, thereby providing insight into its folding process. The attenuated domain crosstalk in apo-calnuc is likely to influence and regulate its physiologically important intermolecular interactions.
Collapse
Affiliation(s)
- Ravichandran Vignesh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
17
|
Cerminara M, Schöne A, Ritter I, Gabba M, Fitter J. Mapping Multiple Distances in a Multidomain Protein for the Identification of Folding Intermediates. Biophys J 2020; 118:688-697. [PMID: 31916943 PMCID: PMC7002912 DOI: 10.1016/j.bpj.2019.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 10/27/2022] Open
Abstract
The investigation and understanding of the folding mechanism of multidomain proteins is still a challenge in structural biology. The use of single-molecule Förster resonance energy transfer offers a unique tool to map conformational changes within the protein structure. Here, we present a study following denaturant-induced unfolding transitions of yeast phosphoglycerate kinase by mapping several inter- and intradomain distances of this two-domain protein, exhibiting a quite heterogeneous behavior. On the one hand, the development of the interdomain distance during the unfolding transition suggests a classical two-state unfolding behavior. On the other hand, the behavior of some intradomain distances indicates the formation of a compact and transient molten globule intermediate state. Furthermore, different intradomain distances measured within the same domain show pronounced differences in their unfolding behavior, underlining the fact that the choice of dye attachment positions within the polypeptide chain has a substantial impact on which unfolding properties are observed by single-molecule Förster resonance energy transfer measurements. Our results suggest that, to fully characterize the complex folding and unfolding mechanism of multidomain proteins, it is necessary to monitor multiple intra- and interdomain distances because a single reporter can lead to a misleading, partial, or oversimplified interpretation.
Collapse
Affiliation(s)
- Michele Cerminara
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany.
| | - Antonie Schöne
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany
| | - Ilona Ritter
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany
| | - Matteo Gabba
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany
| | - Jörg Fitter
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany; RWTH Aachen University, I. Physikalisches Institut (IA), Aachen, Germany.
| |
Collapse
|
18
|
Gershenson A, Gosavi S, Faccioli P, Wintrode PL. Successes and challenges in simulating the folding of large proteins. J Biol Chem 2020; 295:15-33. [PMID: 31712314 PMCID: PMC6952611 DOI: 10.1074/jbc.rev119.006794] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Computational simulations of protein folding can be used to interpret experimental folding results, to design new folding experiments, and to test the effects of mutations and small molecules on folding. However, whereas major experimental and computational progress has been made in understanding how small proteins fold, research on larger, multidomain proteins, which comprise the majority of proteins, is less advanced. Specifically, large proteins often fold via long-lived partially folded intermediates, whose structures, potentially toxic oligomerization, and interactions with cellular chaperones remain poorly understood. Molecular dynamics based folding simulations that rely on knowledge of the native structure can provide critical, detailed information on folding free energy landscapes, intermediates, and pathways. Further, increases in computational power and methodological advances have made folding simulations of large proteins practical and valuable. Here, using serpins that inhibit proteases as an example, we review native-centric methods for simulating the folding of large proteins. These synergistic approaches range from Gō and related structure-based models that can predict the effects of the native structure on folding to all-atom-based methods that include side-chain chemistry and can predict how disease-associated mutations may impact folding. The application of these computational approaches to serpins and other large proteins highlights the successes and limitations of current computational methods and underscores how computational results can be used to inform experiments. These powerful simulation approaches in combination with experiments can provide unique insights into how large proteins fold and misfold, expanding our ability to predict and manipulate protein folding.
Collapse
Affiliation(s)
- Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003.
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India.
| | - Pietro Faccioli
- Dipartimento di Fisica, Universitá degli Studi di Trento, 38122 Povo (Trento), Italy; Trento Institute for Fundamental Physics and Applications, 38123 Povo (Trento), Italy.
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201.
| |
Collapse
|
19
|
Abstract
This Feature Article presents a view of the protein folding transition based on the hypothesis that Nature has built features within the sequences that enable a Shortcut to efficient folding. Nature's Shortcut is proposed to be the early establishment of a set of nonlocal weak contacts, constituting protein loops that significantly constrain regions of the collapsed disordered protein into a native-like low-resolution fluctuating topology of major sections of the backbone. Nature's establishment of this scaffold of nonlocal contacts is claimed to bypass what would otherwise be a nearly hopeless unaided search for the final three-dimensional structure in proteins longer than ∼100 amino acids. To support this main contention of the Feature Article, the loop hypothesis (LH) description of early folding events is experimentally tested with time-resolved Förster resonance energy transfer techniques for adenylate kinase, and the data are shown to be consistent with theoretical predictions from the sequential collapse model (SCM). The experimentally based LH and the theoretically founded SCM are argued to provide a unified picture of the role of nonlocal contacts as constituting Nature's Shortcut to protein folding. Importantly, the SCM is shown to reliably predict key nonlocal contacts utilizing only primary sequence information. This view on Nature's Shortcut is open to the protein community for further detailed assessment, including its practical consequences, by suitable application of advanced experimental and computational techniques.
Collapse
Affiliation(s)
| | - Elisha Haas
- The Goodman Faculty of Life Sciences , Bar-Ilan University , Ramat Gan 52900 , Israel
| | | |
Collapse
|