1
|
Burger N, Meier G, Vlassopoulos D, Loppinet B. High-Pressure Effects on Gelatin Sol-Gel Transition. Ind Eng Chem Res 2025; 64:7370-7380. [PMID: 40225188 PMCID: PMC11987016 DOI: 10.1021/acs.iecr.4c04861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025]
Abstract
We investigated the effects of high hydrostatic pressure on the sol-gel transition of gelatin dispersions. We used dynamic light scattering (DLS) and DLS-based passive microrheology to monitor the evolution of the viscoelasticity during isothermal gelation. It provided easy identification of the sol-gel transition and the isothermal critical gelation time (t c) and values of viscosities of sols and shear modulus of gels. At a given temperature, t c decreased with increasing pressure. Up to 100 MPa, the temperature dependence of t c followed the established empirical rule and the critical temperature T c increased with pressure by ∼0.04 K/MPa. The critical gelation time scaled with the quench depth T-T c or equivalently with the distance from the pressure-dependent collagen denaturation temperature (∼314 K, at 0.1 MPa), which also increases by ∼0.04 K/MPa in the first 100 MPa. The pressure dependence also reflected on the time evolution of the intrinsic viscosity, η i , or elastic modulus, G p, in the sol or gel state, respectively, are reported. Both η i or G P evolution speeds up with pressure. Finally, using a reverse quenching approach, we observed a slowing of the gel melting when the pressure increases. Our results confirmed that the rheological evolution reflects the helix formation process and that pressure stabilizes the helices.
Collapse
Affiliation(s)
- Nikolaos
A. Burger
- Foundation
for Research & Technology Hellas (FORTH), Institute for Electronic
Structure & Laser, Heraklion 70013, Greece
- Department
of Materials Science & Engineering, University of Crete, Heraklion 70013, Greece
| | - Gerhard Meier
- Biomacromolecular
Systems and Processes (IBI-4), Forschungszentrum
Jülich, 52425 Jülich, Germany
| | - Dimitris Vlassopoulos
- Foundation
for Research & Technology Hellas (FORTH), Institute for Electronic
Structure & Laser, Heraklion 70013, Greece
- Department
of Materials Science & Engineering, University of Crete, Heraklion 70013, Greece
| | - Benoit Loppinet
- Foundation
for Research & Technology Hellas (FORTH), Institute for Electronic
Structure & Laser, Heraklion 70013, Greece
| |
Collapse
|
2
|
Krempl C, Wurm JP, Beck Erlach M, Kremer W, Sprangers R. Insights into the Structure of Invisible Conformations of Large Methyl Group Labeled Molecular Machines from High Pressure NMR. J Mol Biol 2023; 435:167922. [PMID: 37330282 DOI: 10.1016/j.jmb.2022.167922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/19/2023]
Abstract
Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion (RD) experiments that report on the population of the sparsely populated open conformation as well as on the exchange rate between the two conformations. To obtain volumetric information on the open conformation as well as on the transition state structure we made use of RD measurements at elevated pressures. We found that the open Dcp1:Dcp2 conformation has a lower molecular volume than the closed conformation and that the transition state is close in volume to the closed state. In the presence of ATP the volume change upon opening of the complex increases and the volume of the transition state lies in-between the volumes of the closed and open state. These findings show that ATP has an effect on the volume changes that are associated with the opening-closing pathway of the complex. Our results highlight the strength of pressure dependent NMR methods to obtain insights into structural features of protein conformations that are not directly observable. As our work makes use of methyl groups as NMR probes we conclude that the applied methodology is also applicable to high molecular weight complexes.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Jan Philip Wurm
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
3
|
Dreydoppel M, Balbach J, Weininger U. Monitoring protein unfolding transitions by NMR-spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2022; 76:3-15. [PMID: 34984658 PMCID: PMC9018662 DOI: 10.1007/s10858-021-00389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 06/01/2023]
Abstract
NMR-spectroscopy has certain unique advantages for recording unfolding transitions of proteins compared e.g. to optical methods. It enables per-residue monitoring and separate detection of the folded and unfolded state as well as possible equilibrium intermediates. This allows a detailed view on the state and cooperativity of folding of the protein of interest and the correct interpretation of subsequent experiments. Here we summarize in detail practical and theoretical aspects of such experiments. Certain pitfalls can be avoided, and meaningful simplification can be made during the analysis. Especially a good understanding of the NMR exchange regime and relaxation properties of the system of interest is beneficial. We show by a global analysis of signals of the folded and unfolded state of GB1 how accurate values of unfolding can be extracted and what limits different NMR detection and unfolding methods. E.g. commonly used exchangeable amides can lead to a systematic under determination of the thermodynamic protein stability. We give several perspectives of how to deal with more complex proteins and how the knowledge about protein stability at residue resolution helps to understand protein properties under crowding conditions, during phase separation and under high pressure.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
4
|
Dreydoppel M, Dorn B, Modig K, Akke M, Weininger U. Transition-State Compressibility and Activation Volume of Transient Protein Conformational Fluctuations. JACS AU 2021; 1:833-842. [PMID: 34467336 PMCID: PMC8395657 DOI: 10.1021/jacsau.1c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Proteins are dynamic entities that intermittently depart from their ground-state structures and undergo conformational transitions as a critical part of their functions. Central to understanding such transitions are the structural rearrangements along the connecting pathway, where the transition state plays a special role. Using NMR relaxation at variable temperature and pressure to measure aromatic ring flips inside a protein core, we obtain information on the structure and thermodynamics of the transition state. We show that the isothermal compressibility coefficient of the transition state is similar to that of short-chain hydrocarbon liquids, implying extensive local unfolding of the protein. Our results further indicate that the required local volume expansions of the protein can occur not only with a net positive activation volume of the protein, as expected from previous studies, but also with zero activation volume by compaction of remote void volume, when averaged over the ensemble of states.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Britta Dorn
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Kristofer Modig
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Mikael Akke
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Ulrich Weininger
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
5
|
Levengood JD, Peterson J, Tolbert BS, Roche J. Thermodynamic stability of hnRNP A1 low complexity domain revealed by high-pressure NMR. Proteins 2021; 89:781-791. [PMID: 33550645 DOI: 10.1002/prot.26058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/21/2020] [Accepted: 01/31/2021] [Indexed: 11/09/2022]
Abstract
We have investigated the pressure- and temperature-induced conformational changes associated with the low complexity domain of hnRNP A1, an RNA-binding protein able to phase separate in response to cellular stress. Solution NMR spectra of the hnRNP A1 low-complexity domain fused with protein-G B1 domain were collected from 1 to 2500 bar and from 268 to 290 K. While the GB1 domain shows the typical pressure-induced and cold temperature-induced unfolding expected for small globular domains, the low-complexity domain of hnRNP A1 exhibits unusual pressure and temperature dependences. We observed that the low-complexity domain is pressure sensitive, undergoing a major conformational transition within the prescribed pressure range. Remarkably, this transition has the inverse temperature dependence of a typical folding-unfolding transition. Our results suggest the presence of a low-lying extended and fully solvated state(s) of the low-complexity domain that may play a role in phase separation. This study highlights the exquisite sensitivity of solution NMR spectroscopy to observe subtle conformational changes and illustrates how pressure perturbation can be used to determine the properties of metastable conformational ensembles.
Collapse
Affiliation(s)
- Jeffrey D Levengood
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jake Peterson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
6
|
Pintér G, Schwalbe H. Refolding of Cold‐Denatured Barstar Induced by Radio‐Frequency Heating: A New Method to Study Protein Folding by Real‐Time NMR Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Johann Wolfgang Goethe-Universität Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Johann Wolfgang Goethe-Universität Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt Germany
| |
Collapse
|
7
|
Pintér G, Schwalbe H. Refolding of Cold-Denatured Barstar Induced by Radio-Frequency Heating: A New Method to Study Protein Folding by Real-Time NMR Spectroscopy. Angew Chem Int Ed Engl 2020; 59:22086-22091. [PMID: 32744407 PMCID: PMC7756886 DOI: 10.1002/anie.202006945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Indexed: 12/29/2022]
Abstract
The C40A/C82A double mutant of barstar has been shown to undergo cold denaturation above the water freezing point. By rapidly applying radio‐frequency power to lossy aqueous samples, refolding of barstar from its cold‐denatured state can be followed by real‐time NMR spectroscopy. Since temperature‐induced unfolding and refolding is reversible for this double mutant, multiple cycling can be utilized to obtain 2D real‐time NMR data. Barstar contains two proline residues that adopt a mix of cis and trans conformations in the low‐temperature‐unfolded state, which can potentially induce multiple folding pathways. The high time resolution real‐time 2D‐NMR measurements reported here show evidence for multiple folding pathways related to proline isomerization, and stable intermediates are populated. By application of advanced heating cycles and state‐correlated spectroscopy, an alternative folding pathway circumventing the rate‐limiting cis‐trans isomerization could be observed. The kinetic data revealed intermediates on both, the slow and the fast folding pathway.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| |
Collapse
|
8
|
Dreydoppel M, Raum HN, Weininger U. Slow ring flips in aromatic cluster of GB1 studied by aromatic 13C relaxation dispersion methods. JOURNAL OF BIOMOLECULAR NMR 2020; 74:183-191. [PMID: 32016706 PMCID: PMC7080667 DOI: 10.1007/s10858-020-00303-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Ring flips of phenylalanine and tyrosine are a hallmark of protein dynamics. They report on transient breathing motions of proteins. In addition, flip rates also depend on stabilizing interactions in the ground state, like aromatic stacking or cation-π interaction. So far, experimental studies of ring flips have almost exclusively been performed on aromatic rings without stabilizing interactions. Here we investigate ring flip dynamics of Phe and Tyr in the aromatic cluster in GB1. We found that all four residues of the cluster, Y3, F30, Y45 and F52, display slow ring flips. Interestingly, F52, the central residue of the cluster, which makes aromatic contacts with all three others, is flipping significantly faster, while the other rings are flipping with the same rates within margin of error. Determined activation enthalpies and activation volumes of these processes are in the same range of other reported ring flips of single aromatic rings. There is no correlation of the number of aromatic stacking interactions to the activation enthalpy, and no correlation of the ring's extent of burying to the activation volume. Because of these findings, we speculate that F52 is undergoing concerted ring flips with each of the other rings.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Heiner N Raum
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
9
|
Konno S, Doi K, Ishimori K. Uncovering dehydration in cytochrome c refolding from urea- and guanidine hydrochloride-denatured unfolded state by high pressure spectroscopy. Biophys Physicobiol 2019; 16:18-27. [PMID: 30775200 PMCID: PMC6373425 DOI: 10.2142/biophysico.16.0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/16/2018] [Indexed: 12/01/2022] Open
Abstract
To investigate the dehydration associated with protein folding, the partial molar volume changes for protein unfolding (ΔVu) in cytochrome c (Cyt c) were determined using high pressure absorption spectroscopy. ΔVu values for the unfolding to urea- and guanidine hydrochloride (GdnHCl)-denatured Cyt c were estimated to be 56±5 and 29±1 mL mol−1, respectively. Considering that the volume change for hydration of hydrophobic groups is positive and that Cyt c has a covalently bonded heme, a positive ΔVu reflects the primary contribution of the hydration of heme. Because of the marked tendency of guanidium ions to interact with hydrophobic groups, a smaller number of water molecules were hydrated with hydrophobic groups in GdnHCl-denatured Cyt c than in urea-denatured Cyt c, resulting in the smaller positive ΔVu. On the other hand, urea is a relatively weak denaturant and urea-denatured Cyt c is not completely hydrated, which retains the partially folded structures. To unfold such partial structures, we introduced a mutation near the heme binding site, His26, to Gln, resulting in a negatively shifted ΔVu (4±2 mL mol−1) in urea-denatured Cyt c. The formation of the more solvated and less structured state in the urea-denatured mutant enhanced hydration to the hydrophilic groups in the unfolding process. Therefore, we confirmed the hydration of amino acid residues in the protein unfolding of Cyt c by estimating ΔVu, which allows us to discuss the hydrated structures in the denatured states of proteins.
Collapse
Affiliation(s)
- Shohei Konno
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kentaro Doi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
10
|
Klamt A, Nagarathinam K, Tanabe M, Kumar A, Balbach J. Hyperbolic Pressure-Temperature Phase Diagram of the Zinc-Finger Protein apoKti11 Detected by NMR Spectroscopy. J Phys Chem B 2019; 123:792-801. [PMID: 30608169 DOI: 10.1021/acs.jpcb.8b11019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For a comprehensive understanding of the thermodynamic state functions describing the stability of a protein, the influence of the intensive properties of temperature and pressure has to be known. With the zinc-finger-containing Kti11, we found a suitable protein for this purpose because folding and unfolding transitions occur at an experimentally accessible temperature (280-330 °K) and pressure (0.1-240 MPa) range. We solved the crystal structure of the apo form of Kti11 to reveal two disulfide bonds at the metal-binding site, which seals off a cavity in the β-barrel part of the protein. From a generally applicable proton NMR approach, we could determine the populations of folded and unfolded chains under all conditions, leading to a hyperbolic pressure-temperature phase diagram rarely observed for proteins. A global fit of a two-state model to all derived populations disclosed reliable values for the change in Gibbs free energy, volume, entropy, heat capacity, compressibility, and thermal expansion upon unfolding. The unfolded state of apoKti11 has a lower compressibility compared to the native state and a smaller volume at ambient pressure. Therefore, a pressure increase up to 200 MPa reduces the population of the native state, and above this value, the native population increases again. Pressure-induced chemical-shift changes in two-dimensional 1H-15N NMR spectra could be employed for a molecular interpretation of the thermodynamic properties of apoKti11.
Collapse
Affiliation(s)
- Andi Klamt
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany
| | - Kumar Nagarathinam
- HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany.,Institute of Virology , Hannover Medical School , Carl-Neuberg-Straße 1 , D-30625 Hannover , Germany
| | - Mikio Tanabe
- HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany.,Structural Biology Research Center, Institute of Materials Structure Science , KEK/High Energy Accelerator Research Organization , 1-1 Oho , Tsukuba , Ibaraki , 305-0801 , Japan
| | - Amit Kumar
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany.,Department of Diabetes, Faculty of Lifesciences and Medicine , King's College London , Great Maze Pond , London SE1 1UL , U.K
| | - Jochen Balbach
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany.,HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany
| |
Collapse
|