1
|
Cui Y, Niu Y, Zhao T, Wang X, Wang D, Zhang Y. Microscopic mechanistic study of the penetration distributions for plasma reactive oxygen and nitrogen species based on sialic acid targeting on the cell membrane surface. Free Radic Biol Med 2024; 225:145-156. [PMID: 39362290 DOI: 10.1016/j.freeradbiomed.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The ability of cold atmospheric plasmas (CAPs) to produce a wide range of active constituents while maintaining a low or even room temperature of the gas has made it a novel research area of great interest. During plasma action, cancer cell membrane surface components are susceptible to oxidative modification by reactive oxygen and nitrogen species (RONS). In this study, the process of oxidative modification of membrane surface components sialic acid by RONS was investigated based on molecular dynamics simulations, and the penetration mechanism of long-lived particles ONOOH and its homolytic products at the membrane-water interface and the effect of appropriate electric field action were studied. The results showed that cancer cells with high sialic acid expression were less stable than healthy cells. Plasma treatment may promote the ONOOH homolysis process, and its homolysis product OH free radical is more likely to adsorb near sialic acid molecules by hydrogen bonding, resulting in oxidative modification. The interaction force between OH free radical and sialic acid molecules is stronger than ONOOH, which helps to further understand the oxidative modification reaction in membrane environment. At the same time, appropriate electric field stimulation can enhance the depth of penetration of RONS to more effectively treat the pathological state of biological tissues. The study proposes the use of membrane surface sialic acid as a cancer therapeutic target and provides guidance for improving the depth of RONS penetration and maximizing the survival of healthy cells, which contributes to the further clinical translation of plasma biomedicine.
Collapse
Affiliation(s)
- Yanxiu Cui
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China
| | - Yanxiong Niu
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China.
| | - Xiaolong Wang
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China
| | - Daohan Wang
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China
| |
Collapse
|
2
|
Möller MN, Vitturi DA. The chemical biology of dinitrogen trioxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 8:100026. [PMID: 38957295 PMCID: PMC11218869 DOI: 10.1016/j.rbc.2024.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Dinitrogen trioxide (N 2 O 3 ) mediates low-molecular weight and protein S- and N-nitrosation, with recent reports suggesting a role in the formation of nitrating intermediates as well as in nitrite-dependent hypoxic vasodilatation. However, the reactivity ofN 2 O 3 in biological systems results in an extremely short half-life that renders this molecule essentially undetectable by currently available technologies. As a result, evidence for in vivoN 2 O 3 formation derives from the detection of nitrosated products as well as from in vitro kinetic determinations, isotopic labeling studies, and spectroscopic analyses. This review will discuss mechanisms ofN 2 O 3 formation, reactivity and decomposition, as well as address the role of sub-cellular localization as a key determinant of its actions. Finally, evidence will be discussed supporting different roles forN 2 O 3 as a biologically relevant signaling molecule.
Collapse
Affiliation(s)
- Matías N. Möller
- Laboratorio Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Darío A. Vitturi
- Department of Pathology. University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Meng X, Liu H, Zhao N, Yang Y, Zhao K, Dai Y. Molecular Dynamics Study of the Effect of Charge and Glycosyl on Superoxide Anion Distribution near Lipid Membrane. Int J Mol Sci 2023; 24:10926. [PMID: 37446103 DOI: 10.3390/ijms241310926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
To examine the effects of membrane charge, the electrolyte species and glycosyl on the distribution of negatively charged radical of superoxide anion (·O2-) around the cell membrane, different phospholipid bilayer systems containing ·O2- radicals, different electrolytes and phospholipid bilayers were constructed through Charmm-GUI and Amber16. These systems were equilibrated with molecular dynamics by using Gromacs 5.0.2 to analyze the statistical behaviors of ·O2- near the lipid membrane under different conditions. It was found that in the presence of potassium rather than sodium, the negative charge of the phospholipid membrane is more likely to rarefy the superoxide anion distribution near the membrane surface. Further, the presence of glycosyl significantly reduced the density of ·O2- near the phospholipid bilayer by 78.3% compared with that of the neutral lipid membrane, which may have a significant contribution to reducing the lipid peroxidation from decreasing the ·O2- density near the membrane.
Collapse
Affiliation(s)
- Xuan Meng
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Huiyu Liu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ning Zhao
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yajun Yang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kai Zhao
- Hebei Kingsci Pharmaceutical Technology Co., Ltd., Shijiazhuang 050035, China
- Jangxi Ourshi Pharmaceutical Co., Ltd., Xinyu 338012, China
| | - Yujie Dai
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Abduvokhidov D, Yusupov M, Shahzad A, Attri P, Shiratani M, Oliveira MC, Razzokov J. Unraveling the Transport Properties of RONS across Nitro-Oxidized Membranes. Biomolecules 2023; 13:1043. [PMID: 37509079 PMCID: PMC10377474 DOI: 10.3390/biom13071043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of cold atmospheric plasma (CAP) in biomedical applications has received significant interest, due to its ability to generate reactive oxygen and nitrogen species (RONS). Upon exposure to living cells, CAP triggers alterations in various cellular components, such as the cell membrane. However, the permeation of RONS across nitrated and oxidized membranes remains understudied. To address this gap, we conducted molecular dynamics simulations, to investigate the permeation capabilities of RONS across modified cell membranes. This computational study investigated the translocation processes of less hydrophilic and hydrophilic RONS across the phospholipid bilayer (PLB), with various degrees of oxidation and nitration, and elucidated the impact of RONS on PLB permeability. The simulation results showed that less hydrophilic species, i.e., NO, NO2, N2O4, and O3, have a higher penetration ability through nitro-oxidized PLB compared to hydrophilic RONS, i.e., HNO3, s-cis-HONO, s-trans-HONO, H2O2, HO2, and OH. In particular, nitro-oxidation of PLB, induced by, e.g., cold atmospheric plasma, has minimal impact on the penetration of free energy barriers of less hydrophilic species, while it lowers these barriers for hydrophilic RONS, thereby enhancing their translocation across nitro-oxidized PLB. This research contributes to a better understanding of the translocation abilities of RONS in the field of plasma biomedical applications and highlights the need for further analysis of their role in intracellular signaling pathways.
Collapse
Affiliation(s)
- Davronjon Abduvokhidov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Department of Information Technologies, Tashkent International University of Education, Imom Bukhoriy 6, Tashkent 100207, Uzbekistan
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan
| | - Maksudbek Yusupov
- R&D Center, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan
- Department of Power Supply and Renewable Energy Sources, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Aamir Shahzad
- Modeling and Simulation Laboratory, Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38040, Pakistan
| | - Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Maria C Oliveira
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- School of Engineering, Akfa University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan
| |
Collapse
|
5
|
Scholes RC. Emerging investigator series: contributions of reactive nitrogen species to transformations of organic compounds in water: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:851-869. [PMID: 35546580 DOI: 10.1039/d2em00102k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reactive nitrogen species (RNS) pose a potential risk to drinking water quality because they react with organic compounds to form toxic byproducts. Since the discovery of RNS formation in sunlit surface waters, these reactive intermediates have been detected in numerous sunlit natural waters and engineered water treatment systems. This critical review summarizes what is known regarding RNS, including their formation, contributions to contaminant transformation, and products resulting from RNS reactions. Reaction mechanisms and rate constants have been described for nitrogen dioxide (˙NO2) reacting with phenolic compounds. However, significant knowledge gaps remain regarding reactions of RNS with other types of organic compounds. Promising methods to quantify RNS concentrations and reaction rates include the use of selective quenchers and probe compounds as well as electron paramagnetic resonance spectroscopy. Additionally, high resolution mass spectrometry methods have enabled the identification of nitr(os)ated byproducts that form via RNS reactions in sunlit surface waters, UV-based treatment systems, treatment systems that employ chemical oxidants such as chlorine and ozone, and certain types of biological treatment processes. Recommendations are provided for future research to increase understanding of RNS reactions and products, and the implications for drinking water toxicity.
Collapse
Affiliation(s)
- Rachel C Scholes
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
6
|
Razzokov J, Fazliev S, Kodirov A, AttrI P, Chen Z, Shiratani M. Mechanistic Insight into Permeation of Plasma-Generated Species from Vacuum into Water Bulk. Int J Mol Sci 2022; 23:6330. [PMID: 35683009 PMCID: PMC9181481 DOI: 10.3390/ijms23116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Due to their potential benefits, cold atmospheric plasmas (CAPs), as biotechnological tools, have been used for various purposes, especially in medical and agricultural applications. The main effect of CAP is associated with reactive oxygen and nitrogen species (RONS). In order to deliver these RONS to the target, direct or indirect treatment approaches have been employed. The indirect method is put into practice via plasma-activated water (PAW). Despite many studies being available in the field, the permeation mechanisms of RONS into water at the molecular level still remain elusive. Here, we performed molecular dynamics simulations to study the permeation of RONS from vacuum into the water interface and bulk. The calculated free energy profiles unravel the most favourable accumulation positions of RONS. Our results, therefore, provide fundamental insights into PAW and RONS chemistry to increase the efficiency of PAW in biological applications.
Collapse
Affiliation(s)
- Jamoliddin Razzokov
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan;
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
- College of Engineering, Akfa University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan
| | - Sunnatullo Fazliev
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany;
- Faculty of Chemistry and Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Akbar Kodirov
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan;
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
| | - Pankaj AttrI
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; (P.A.); (M.S.)
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Zhitong Chen
- Center for Advanced Therapy, National Innovation Center for Advanced Medical Devices, Shenzhen 518000, China;
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; (P.A.); (M.S.)
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Fathi F, Ebrahimi SN, Prior JAV, Machado SML, Kouchaksaraee RM, Oliveira MBPP, Alves RC. Formulation of Nano/Micro-Carriers Loaded with an Enriched Extract of Coffee Silverskin: Physicochemical Properties, In Vitro Release Mechanism and In Silico Molecular Modeling. Pharmaceutics 2022; 14:112. [PMID: 35057007 PMCID: PMC8781543 DOI: 10.3390/pharmaceutics14010112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023] Open
Abstract
Designing strategies for an effective transformation of food waste into high-value products is a priority to address environmental sustainability concerns. Coffee silverskin is the major by-product of the coffee roasting industry, being rich in compounds with health benefits. Such composition gives it the potential to be transformed into high-value products. In this study, coffee silverskin extracts were enriched, regarding caffeine and chlorogenic acid contents, by adsorbent column chromatography. The compounds content increased 3.08- and 2.75-fold, respectively, compared to the original extract. The enriched fractions were loaded into nano-phytosomes or cholesterol-incorporated nano-phytosomes (first coating layers) to improve the physiochemical properties and permeation rate. These nano-lipid carriers were also subjected to a secondary coating with different natural polymers to improve protection and stability against degradation. In parallel, and for comparison, different natural polymers were also used as first coating layers. The produced particles were evaluated regarding product yield, encapsulation efficiency, loading capacity, particle size, surface charge, and in vitro release simulating gastrointestinal conditions. All samples exhibited anionic surface charge. FTIR and molecular docking confirmed interactions between the phytoconstituents and lipid bilayers. The best docking score was observed for 5-caffeoylquinic acid (chlorogenic acid) exhibiting a stronger hydrogen binding to the lipid bilayer. Among several kinetic models tested, the particle release mechanism fitted well with the First-order, Korsmeyer-Peppas, and Higuchi models. Moreover, most of the formulated particles followed the diffusion-Fick law and anomalous transport.
Collapse
Affiliation(s)
- Faezeh Fathi
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Samad N. Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - João A. V. Prior
- REQUIMTE/LAQV, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Susana M. L. Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Reza Mohsenian Kouchaksaraee
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.F.); (S.M.L.M.); (R.M.K.)
| |
Collapse
|
8
|
Oliveira MC, Yusupov M, Cordeiro RM, Bogaerts A. Unraveling the permeation of reactive species across nitrated membranes by computer simulations. Comput Biol Med 2021; 136:104768. [PMID: 34426173 DOI: 10.1016/j.compbiomed.2021.104768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are involved in many biochemical processes, including nitro-oxidative stress that causes cancer cell death, observed in cancer therapies such as photodynamic therapy and cold atmospheric plasma. However, their mechanisms of action and selectivity still remain elusive due to the complexity of biological cells. For example, it is not well known how RONS generated by cancer therapies permeate the cell membrane to cause nitro-oxidative damage. There are many studies dedicated to the permeation of RONS across native and oxidized membranes, but not across nitrated membranes, another lipid product also generated during nitro-oxidative stress. Herein, we performed molecular dynamics (MD) simulations to calculate the free energy barrier of RONS permeation across nitrated membranes. Our results show that hydrophilic RONS, such as hydroperoxyl radical (HO2) and peroxynitrous acid (ONOOH), have relatively low barriers compared to hydrogen peroxide (H2O2) and hydroxyl radical (HO), and are more prone to permeate the membrane than for the native or peroxidized membranes, and similar to aldehyde-oxidized membranes. Hydrophobic RONS like molecular oxygen (O2), nitrogen dioxide (NO2) and nitric oxide (NO) even have insignificant barriers for permeation. Compared to native and peroxidized membranes, nitrated membranes are more permeable, suggesting that we must not only consider oxidized membranes during nitro-oxidative stress, but also nitrated membranes, and their role in cancer therapies.
Collapse
Affiliation(s)
- Maria C Oliveira
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium; Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Durmon yuli str. 33, 100125, Tashkent, Uzbekistan
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| |
Collapse
|
9
|
Sharma HS, Lafuente JV, Muresanu DF, Sahib S, Tian ZR, Menon PK, Castellani RJ, Nozari A, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Neuroprotective effects of insulin like growth factor-1 on engineered metal nanoparticles Ag, Cu and Al induced blood-brain barrier breakdown, edema formation, oxidative stress, upregulation of neuronal nitric oxide synthase and brain pathology. PROGRESS IN BRAIN RESEARCH 2021; 266:97-121. [PMID: 34689867 DOI: 10.1016/bs.pbr.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are vulnerable to environmental or industrial exposure of engineered nanoparticles (NPs) from metals. Long-term exposure of NPs from various sources affect sensory-motor or cognitive brain functions. Thus, a possibility exists that chronic exposure of NPs affect blood-brain barrier (BBB) breakdown and brain pathology by inducing oxidative stress and/or nitric oxide production. This hypothesis was examined in the rat intoxicated with Ag, Cu or Al (50-60nm) nanoparticles (50mg/kg, i.p. once daily) for 7 days. In these NPs treated rats the BBB permeability, brain edema, neuronal nitric oxide synthase (nNOS) immunoreactivity and brain oxidants levels, e.g., myeloperoxidase (MP), malondialdehyde (MD) and glutathione (GT) was examined on the 8th day. Cu and Ag but not Al nanoparticles increased the MP and MD levels by twofold in the brain although, GT showed 50% decline. At this time increase in brain water content and BBB breakdown to protein tracers were seen in areas exhibiting nNOS positive neurons and cell injuries. Pretreatment with insulin like growth factor-1 (IGF-1) in high doses (1μg/kg, i.v. but not 0.5μg/kg daily for 7 days) together with NPs significantly reduced the oxidative stress, nNOS upregulation, BBB breakdown, edema formation and cell injuries. These novel observations demonstrate that (i) NPs depending on their metal constituent (Cu, Ag but not Al) induce oxidative stress and nNOS expression leading to BBB disruption, brain edema and cell damage, and (ii) IGF-1 depending on doses exerts powerful neuroprotection against nanoneurotoxicity, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Wang F, Jiang X, Xiang H, Wang N, Zhang Y, Yao X, Wang P, Pan H, Yu L, Cheng Y, Hu Y, Lin W, Li X. An inherently kidney-targeting near-infrared fluorophore based probe for early detection of acute kidney injury. Biosens Bioelectron 2021; 172:112756. [PMID: 33197750 DOI: 10.1016/j.bios.2020.112756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
Acute kidney injury (AKI) is common in hospital patients. Delayed diagnosis and treatment of AKI due to the lack of efficient early diagnosis is an important cause of its high mortality. While fluorescence imaging seems promising to non-intrusively interrogate AKI-related biomarkers, the low kidney contrast of many fluorophores conferred by their relatively low abundance of distribution in the kidney limits their application for AKI detection. Herein, we discovered a near-infrared fluorophore with inherent kidney-targeting ability. Based on this fluorophore, a fluorogenic probe (KNP-1) was developed by targeting peroxynitrite (ONOO-), which is upregulated at the early onset of AKI. KNP-1 exhibits desirable kidney distribution after intravenous administration and is fluorescent only after activation by ONOO-. These properties lead to excellent kidney contrast imaging results. KNP-1 is capable of detecting both nephrotoxin-induced and ischemia-reperfusion injury-induced AKI in live mice. Temporally resolved imaging of AKI-disease model mice with KNP-1 suggests a gradual increase in renal ONOO- levels with disease progression. Notably, the upregulation of ONOO- can be observed at least 24 h earlier than the clinically popular sCr and BUN methods. Blocking ONOO- generation also proves beneficial. These results highlight the applicability of this inherently tissue targeting-based strategy for designing probes with desirable imaging contrast; potentiate ONOO- as a biomarker and target for AKI early diagnosis and medical intervention; and imply the clinical relevance of KNP-1 for AKI early detection.
Collapse
Affiliation(s)
- Fangqin Wang
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Xuefeng Jiang
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Huaijiang Xiang
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Ning Wang
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Yunjing Zhang
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Xi Yao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Ping Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hao Pan
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Lifang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Yunfeng Cheng
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yongzhou Hu
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Weiqiang Lin
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xin Li
- The Fourth Affiliated Hospital, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
11
|
Oliveira MC, Yusupov M, Bogaerts A, Cordeiro RM. How do nitrated lipids affect the properties of phospholipid membranes? Arch Biochem Biophys 2020; 695:108548. [DOI: 10.1016/j.abb.2020.108548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023]
|
12
|
Kumar S, Rana R, Yadav DK. Atomic-scale modeling of the effect of lipid peroxidation on the permeability of reactive species. J Biomol Struct Dyn 2020; 39:1284-1294. [PMID: 32072880 DOI: 10.1080/07391102.2020.1730971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomembranes and lipid systems are rich in unsaturated lipid components and are subject to photo-induced lipid peroxidation. The peroxidized lipid products in cellular systems are known to affect the structural organization and function of the biomembrane. We employed molecular dynamics simulations to study the effects of phospholipid peroxidation on membrane properties and the permeability of different reactive species. The results suggest that when the lipids are peroxidized, the peroxide group moves toward the membrane surface, which causes the membrane system to expand laterally and increase in area. The permeability profile revealed that nitrogen species can easily permeate through the native and peroxidized system in comparison to oxygen species, suggesting its importance in plasma-based treatment. Thus, by breaching the energy barrier with lower energy, they can traverse the cell membrane and induce oxidative stress, which leads to apoptosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Dharmendra K Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
13
|
Cordeiro RM, Yusupov M, Razzokov J, Bogaerts A. Parametrization and Molecular Dynamics Simulations of Nitrogen Oxyanions and Oxyacids for Applications in Atmospheric and Biomolecular Sciences. J Phys Chem B 2020; 124:1082-1089. [DOI: 10.1021/acs.jpcb.9b08172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rodrigo M. Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André (SP), Brazil
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Jamoliddin Razzokov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
14
|
Diffusion and Transport of Reactive Species Across Cell Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:3-19. [PMID: 31140168 DOI: 10.1007/978-3-030-11488-6_1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This chapter includes an overview of the structure of cell membranes and a review of the permeability of membranes to biologically relevant oxygen and nitrogen reactive species, namely oxygen, singlet oxygen, superoxide, hydrogen peroxide, hydroxyl radical, nitric oxide, nitrogen dioxide, peroxynitrite and also hydrogen sulfide. Physical interactions of these species with cellular membranes are discussed extensively, but also their relevance to chemical reactions such as lipid peroxidation. Most of these species are involved in different cellular redox processes ranging from physiological pathways to damaging reactions against biomolecules. Cell membranes separate and compartmentalize different processes, inside or outside cells, and in different organelles within cells. The permeability of these membranes to reactive species varies according to the physicochemical properties of each molecule. Some of them, such as nitric oxide and oxygen, are small and hydrophobic and can traverse cellular membranes virtually unhindered. Nitrogen dioxide and hydrogen sulfide find a slightly higher barrier to permeation, but still their diffusion is largely unimpeded by cellular membranes. In contrast, the permeability of cellular membranes to the more polar hydrogen peroxide, is up to five orders of magnitude lower, allowing the formation of concentration gradients, directionality and effective compartmentalization of its actions which can be further regulated by specific aquaporins that facilitate its diffusion through membranes. The compartmentalizing effect on anionic species such as superoxide and peroxynitrite is even more accentuated because of the large energetic barrier that the hydrophobic interior of membranes presents to ions that may be overcome by protonation or the use of anion channels. The large difference in cell membrane permeability for different reactive species indicates that compartmentalization is possible for some but not all of them.
Collapse
|
15
|
Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2930504. [PMID: 31316715 PMCID: PMC6604302 DOI: 10.1155/2019/2930504] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022]
Abstract
Aquaporins (AQPs) are transmembrane proteins that conduct not only water molecules across the cell membrane but also other solutes, such as reactive oxygen and nitrogen species (RONS), produced (among others) by cold atmospheric plasma (CAP). These RONS may induce oxidative stress in the cell interior, which plays a role in cancer treatment. The underlying mechanisms of the transport of RONS across AQPs, however, still remain obscure. We apply molecular dynamics simulations to investigate the permeation of both hydrophilic (H2O2 and OH) and hydrophobic (NO2 and NO) RONS through AQP1. Our simulations show that these RONS can all penetrate across the pores of AQP1. The permeation free energy barrier of OH and NO is lower than that of H2O2 and NO2, indicating that these radicals may have easier access to the pore interior and interact with the amino acid residues of AQP1. We also study the effect of RONS-induced oxidation of both the phospholipids and AQP1 (i.e., sulfenylation of Cys191) on the transport of the above-mentioned RONS across AQP1. Both lipid and protein oxidation seem to slightly increase the free energy barrier for H2O2 and NO2 permeation, while for OH and NO, we do not observe a strong effect of oxidation. The simulation results help to gain insight in the underlying mechanisms of the noticeable rise of CAP-induced RONS in cancer cells, thereby improving our understanding on the role of AQPs in the selective anticancer capacity of CAP.
Collapse
|
16
|
Simakin AV, Astashev ME, Baimler IV, Uvarov OV, Voronov VV, Vedunova MV, Sevost'yanov MA, Belosludtsev KN, Gudkov SV. The Effect of Gold Nanoparticle Concentration and Laser Fluence on the Laser-Induced Water Decomposition. J Phys Chem B 2019; 123:1869-1880. [PMID: 30696249 DOI: 10.1021/acs.jpcb.8b11087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This Article covers the influence of the concentration of gold nanoparticles on laser-induced water decomposition. It was established that addition of gold nanoparticles intensifies laser-induced water decomposition by almost 2 orders of magnitude. The water decomposition rate was shown to be maximal at a nanoparticle concentration around 1010 NP/mL, whereas a decrease or increase of nanoparticle concentration leads to a decrease of water decomposition rate. It was demonstrated that, if the concentration of nanoparticles in water-based colloid was less than 1010 NP/mL, laser irradiation of the colloid caused formation of molecular hydrogen, hydrogen peroxide, and molecular oxygen. If the concentration of nanoparticles exceeded 1011 NP/mL, only two products, molecular hydrogen and hydrogen peroxide, were formed. Correlations between the water decomposition rate and the main optical and acoustic parameters of optical breakdown-generated plasma were investigated. Variants of laser-induced decomposition of colloidal solutions of nanoparticles based on organic solvents (ethanol, propanol-2, butanol-2, diethyl ether) were also analyzed.
Collapse
Affiliation(s)
- Aleksander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia
| | - Maxim E Astashev
- Institute of Cell Biophysics of the Russian Academy of Sciences , 3 Institutskaya St. , Pushchino, Moscow Region 119991 , Russia
| | - Ilya V Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia.,Moscow Institute of Physics and Technology , Institutsky Lane 9 , Dolgoprudny, Moscow Region 141700 , Russia
| | - Oleg V Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia
| | - Valery V Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia
| | - Maria V Vedunova
- Institute of Biology and Biomedicine , Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Ave. , Nizhny Novgorod 603950 , Russia
| | - Mikhail A Sevost'yanov
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences , 49 Leninskiy Ave. , Moscow 119334 , Russia
| | | | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia.,Institute of Biology and Biomedicine , Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Ave. , Nizhny Novgorod 603950 , Russia.,Moscow Regional Research and Clinical Institute (MONIKI) , 61/2 Shchepkina St. , Moscow 129110 , Russia
| |
Collapse
|