Tyler J, Forger D, Kim JK. Inferring causality in biological oscillators.
Bioinformatics 2021;
38:196-203. [PMID:
34463706 PMCID:
PMC8696107 DOI:
10.1093/bioinformatics/btab623]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION
Fundamental to biological study is identifying regulatory interactions. The recent surge in time-series data collection in biology provides a unique opportunity to infer regulations computationally. However, when components oscillate, model-free inference methods, while easily implemented, struggle to distinguish periodic synchrony and causality. Alternatively, model-based methods test the reproducibility of time series given a specific model but require inefficient simulations and have limited applicability.
RESULTS
We develop an inference method based on a general model of molecular, neuronal and ecological oscillatory systems that merges the advantages of both model-based and model-free methods, namely accuracy, broad applicability and usability. Our method successfully infers the positive and negative regulations within various oscillatory networks, e.g. the repressilator and a network of cofactors at the pS2 promoter, outperforming popular inference methods.
AVAILABILITY AND IMPLEMENTATION
We provide a computational package, ION (Inferring Oscillatory Networks), that users can easily apply to noisy, oscillatory time series to uncover the mechanisms by which diverse systems generate oscillations. Accompanying MATLAB code under a BSD-style license and examples are available at https://github.com/Mathbiomed/ION. Additionally, the code is available under a CC-BY 4.0 License at https://doi.org/10.6084/m9.figshare.16431408.v1.
SUPPLEMENTARY INFORMATION
Supplementary data are available at Bioinformatics online.
Collapse