1
|
Kim D, Kim DY, Han JH. Development of a novel fluorescence light-up Pb 2+ sensor using a G-quadruplex complex with modified thioflavin T. Analyst 2025; 150:712-717. [PMID: 39835961 DOI: 10.1039/d4an01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Here, we developed a novel, cost-effective fluorescence light-up biosensor for Pb2+ detection based on a label-free G-quadruplex combined with modified thioflavin T (ThT) derivatives. Among the various G-quadruplex sequences tested, only T2 exhibited fluorescence light-up properties upon interacting with the modified ThT derivatives in the presence of Pb2+. To enhance the Pb2+ sensing system, we also compared modified ThT derivatives, including the newly synthesized propyl-substituted ThT (ThT-P) and butyl-substituted ThT (ThT-B). Among the tested derivatives, ethyl-substituted ThT (ThT-E) exhibited the most significant fluorescence enhancement upon the addition of Pb2+. Our designed sensor demonstrated high selectivity and sensitivity for Pb2+, enabling practical applications, as validated through the successful detection of Pb2+ in spiked environmental water samples. We envision that our new strategy could be further developed into a versatile platform for the detection of a broad range of metal ions.
Collapse
Affiliation(s)
- Duyeop Kim
- Department of Chemical and Biological Engineering, Andong National University, Andong, Republic of Korea.
| | - Do Yeon Kim
- Department of Chemical and Biological Engineering, Andong National University, Andong, Republic of Korea.
| | - Ji Hoon Han
- Department of Chemical and Biological Engineering, Andong National University, Andong, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Cao K, Zong M, Yuan S, Zhang N, Liu Y. Mutual promotion of co-condensation of KRAS G-quadruplex and a well-folded protein HMGB1. Nucleic Acids Res 2024; 52:288-299. [PMID: 37897365 PMCID: PMC10783520 DOI: 10.1093/nar/gkad938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/09/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) of G-quadruplex (GQ) is involved in many crucial cellular processes, while the quadruplex-folding and their functions are typically modulated by specific DNA-binding proteins. However, the regulatory mechanism of binding proteins, particularly the well-folded proteins, on the LLPS of GQs is largely unknown. Here, we investigated the effect of HMGB1 on the condensation of a G-quadruplex of KRAS promoter (GQKRAS). The results show that these two rigid macro-biomolecules undergo co-condensation through a mutual promotion manner, while neither of them can form LLPS alone. Fluidity measurements confirm that the liquid-like droplets are highly dynamic. HMGB1 facilitates and stabilizes the quadruplex folding of GQKRAS, and this process enhances their co-condensation. The KRAS promoter DNA retains quadruplex folding in the droplets; interference with the GQ-folding disrupts the co-condensation of GQKRAS/HMGB1. Mechanistic studies reveal that electrostatic interaction is a key driving force of the interaction and co-condensation of GQKRAS/HMGB1; meanwhile, the recognition of two macro-biomolecules plays a crucial role in this process. This result indicates that the phase separation of GQs can be modulated by DNA binding proteins, and this process could also be an efficient way to recruit specific DNA binding proteins.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kaiming Cao
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Mingxi Zong
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Siming Yuan
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Na Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Yangzhong Liu
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
3
|
Johnson RE, Murray MT, Roby DJ, Bycraft LJ, Churcher ZR, Yadav S, Johnson PE, Wetmore SD, Manderville RA. Unlocking Pb 2+ Sensing Potential in a DNA G-Quadruplex via Loop Modification with Fluorescent Chalcone Surrogates. ACS Sens 2023; 8:4756-4764. [PMID: 38063049 DOI: 10.1021/acssensors.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The ability of guanine (G)-rich DNA to bind toxic lead (Pb2+) ions within a G-quadruplex (GQ) motif is a leading DNA biosensor strategy. A major analytical hurdle for GQ detection of Pb2+ is competitive GQ templating by potassium (K+) ions. We employ the on-strand DNA synthesis of internal fluorescent chalcone surrogates within the 15-mer thrombin binding aptamer (TBA15) to address this challenge. Replacement of thymidine at the 3-position (T3) within TBA15 with an indole-4-hydroxy-indanone (Ind4HI) chalcone strongly decreases K+-GQ stability while enhancing Pb2+-GQ stability to increase Pb2+ binding specificity. The new T3-Ind4HI probe exhibits a 15-fold increase in fluorescence intensity upon binding of Pb2+ by the modified TBA15 and can detect 6.4 nM Pb2+ in the presence of 10 mM K+. Thus, replacement of the T3 residue of TBA15 with the new Ind4HI probe modulates metal ion affinity by native TBA15 to solve the analytical challenge posed by K+ in real water samples for detecting Pb2+ to meet regulatory guidelines by using a GQ biosensor.
Collapse
Affiliation(s)
- Ryan E Johnson
- Departments of Chemistry and Toxicology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Makay T Murray
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Dylan J Roby
- Departments of Chemistry and Toxicology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Lucas J Bycraft
- Departments of Chemistry and Toxicology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Zachary R Churcher
- Department of Chemistry, York University, Toronto M3J 1P3, Ontario, Canada
| | - Saanya Yadav
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Philip E Johnson
- Department of Chemistry, York University, Toronto M3J 1P3, Ontario, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | - Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
4
|
Du R, Yang X, Jin P, Guo Y, Cheng Y, Yu H, Xie Y, Qian H, Yao W. G-quadruplex based biosensors for the detection of food contaminants. Crit Rev Food Sci Nutr 2022; 63:8808-8822. [PMID: 35389275 DOI: 10.1080/10408398.2022.2059753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
G-quadruplex (G4) is a very interesting DNA structure, commonly associated with cancer and its treatment. With flexible binding ability, G4 has been extended as a significant component in biosensors. On account of its simple operation, high sensitivity and low cost, G4-based biosensors have attracted considerable interest for the detection of food contaminants. In this review, research published in recent 5 years is collated from a principle perspective, that is target recognition and signal transduction. Contaminants with G4 binding capacity are illustrated, emerging G4-based biosensors including colorimetric, electrochemical and fluorescent sensors are also elaborated. The current review indicates that G4 has provided an efficient and effective solution for the rapid detection of food contaminants. A distinctive feature of G4 as recognition unit is the simple composition, but the selectivity is still unsatisfactory. As signal reporter, G4/hemin DNAzyme has not only achieved amplified signals, but also enabled visualized detection, which offers great potential for on-site measurement. With improved selectivity and visualized signal, the combination of aptamer and G4 seems to be an ideal strategy. This promising combination should be developed for the real-time monitor of multiple contaminants in food matrix.
Collapse
Affiliation(s)
- Rong Du
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiebingqing Yang
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ping Jin
- Suzhou Product Quality Supervision and Inspection Institute, Suzhou, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Engineering Research Center of Dairy Quality and Safety Control Technology (Ministry of Education), Inner Mongolia University, Inner Mongolia Autonomous Region, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Engineering Research Center of Dairy Quality and Safety Control Technology (Ministry of Education), Inner Mongolia University, Inner Mongolia Autonomous Region, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Siemieniuk A, Burdach Z, Karcz W. A Comparison of the Effect of Lead (Pb) on the Slow Vacuolar (SV) and Fast Vacuolar (FV) Channels in Red Beet ( Beta vulgaris L.) Taproot Vacuoles. Int J Mol Sci 2021; 22:12621. [PMID: 34884427 PMCID: PMC8657509 DOI: 10.3390/ijms222312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Little is known about the effect of lead on the activity of the vacuolar K+ channels. Here, the patch-clamp technique was used to compare the impact of lead (PbCl2) on the slow-activating (SV) and fast-activating (FV) vacuolar channels. It was revealed that, under symmetrical 100-mM K+, the macroscopic currents of the SV channels exhibited a typical slow activation and a strong outward rectification of the steady-state currents, while the macroscopic currents of the FV channels displayed instantaneous currents, which, at the positive potentials, were about three-fold greater compared to the one at the negative potentials. When PbCl2 was added to the bath solution at a final concentration of 100 µM, it decreased the macroscopic outward currents of both channels but did not change the inward currents. The single-channel recordings demonstrated that cytosolic lead causes this macroscopic effect by a decrease of the single-channel conductance and decreases the channel open probability. We propose that cytosolic lead reduces the current flowing through the SV and FV channels, which causes a decrease of the K+ fluxes from the cytosol to the vacuole. This finding may, at least in part, explain the mechanism by which cytosolic Pb2+ reduces the growth of plant cells.
Collapse
Affiliation(s)
| | | | - Waldemar Karcz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska St., 40-032 Katowice, Poland; (A.S.); (Z.B.)
| |
Collapse
|
7
|
Johnson RE, Van Riesen AJ, Manderville RA. On-Strand Knoevenagel Insertion of a Hemicyanine Molecular Rotor Loop Residue for Turn-On Fluorescence Detection of Pb-Induced G-Quadruplex Rigidity. Bioconjug Chem 2021; 32:2224-2232. [PMID: 34543022 DOI: 10.1021/acs.bioconjchem.1c00386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We demonstrate the ability to distinguish Pb2+ from K+ within the central cavity of the antiparallel G-quadruplex (GQ) DNA produced by the thrombin binding aptamer (TBA) using an internal molecular rotor fluorescent probe. An indole-aldehyde containing an acyclic N-glycol group was first employed in the on-strand Knoevenagel condensation with five different heterocyclic quaternary cationic acceptors to assess the molecular rotor character of the resulting cyanine-styryl dyes within duplex DNA. An indole-pyridinium (4PI) nucleobase surrogate displayed the greatest turn-on emission response to duplex formation and was thus inserted into the loop residues of TBA to monitor GQ-folding in the presence of Pb2+ versus K+. TBA-4PI exhibits turn-on emission upon Pb2+-binding with a brightness (ε·Φfl) of 9000 cm-1 M-1 compared to K+-binding (ε·Φfl ∼ 2000 cm-1 M-1) due to Pb2+-induced GQ rigidity with 4PI-G-tetrad stacking interactions. The Pb2+-bound TBA-4PI GQ also provides energy-transfer (ET) fluorescence with a diagnostic excitation at 310 nm for distinguishing Pb2+ from K+ within the antiparallel GQ. The TBA-4PI GQ affords the desired turn-on fluorescence response for detecting Pb2+ ions with an apparent dissociation constant (Kd) of 63 nM and a limit of detection (LOD) of 19 nM in an aqueous buffer. It can also distinguish Pb2+ (230 nM) from K+ (1.5 mM, 6500-fold excess) in an antiparallel GQ recognition motif without topology twitching.
Collapse
Affiliation(s)
- Ryan E Johnson
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Abigail J Van Riesen
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
9
|
Escher D, Hossain MN, Kraatz HB, Müller J. Metal-dependent electrochemical discrimination of DNA quadruplex sequences. J Biol Inorg Chem 2021; 26:659-666. [PMID: 34347161 PMCID: PMC8437839 DOI: 10.1007/s00775-021-01881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Films of four different DNA quadruplex-forming (G4) sequences (c-KIT, c-MYC, HTelo, and BCL2) on gold surfaces were investigated by electrochemical impedance spectroscopy (EIS) to evaluate whether they evoke unique electrochemical responses that can be used for their identification. This could render EIS an alternative means for the determination of G4 sequences of unknown structure. Towards, this end, cation-dependent topology changes in the presence of either K+, K+ in combination with Li+, or Pb2+ in the presence of Li+ were first evaluated by circular dichroism (CD) spectroscopy, and electrochemical studies were performed subsequently. As a result, G4-sequence specific charge transfer resistance (RCT) patterns were in fact observed for each G4 sequence, allowing their discrimination by EIS.
Collapse
Affiliation(s)
- Daniela Escher
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - M Nur Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada.
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany.
| |
Collapse
|
10
|
Nishio M, Tsukakoshi K, Ikebukuro K. G-quadruplex: Flexible conformational changes by cations, pH, crowding and its applications to biosensing. Biosens Bioelectron 2021; 178:113030. [PMID: 33524709 DOI: 10.1016/j.bios.2021.113030] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
G-quadruplex (G4) is a non-canonical structure that is formed in G-rich sequences of nucleic acids. G4s play important roles in vivo, such as telomere maintenance, transcription, and DNA replication. There are three typical topologies of G4: parallel, anti-parallel, and hybrid. In general, metal cations, such as potassium and sodium, stabilize G4s through coordination in the G-quartet. While G4s have some functions in vivo, there are many reports of developed applications that use G4s. As various conformations of G4s could form from one sequence depending on varying conditions, many researchers have developed G4-based sensors. Furthermore, G4 is a great scaffold of aptamers since many aptamers folded into G4s have also been reported. However, there are some challenges about its practical use due to the difference between practical sample conditions and experimental ones. G4 conformations are dramatically altered by the surrounding conditions, such as metal cations, pH, and crowding. Many studies have been conducted to characterize G4 conformations under various conditions, not only to use G4s in practical applications but also to reveal its function in vivo. In this review, we summarize recent studies that have investigated the effects of surrounding conditions (e.g., metal cations, pH, and crowding) on G4 conformations and the application of G4s mainly in biosensor fields, and in others.
Collapse
Affiliation(s)
- Maui Nishio
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
11
|
Yang Y, Li W, Liu J. Review of recent progress on DNA-based biosensors for Pb 2+ detection. Anal Chim Acta 2020; 1147:124-143. [PMID: 33485571 DOI: 10.1016/j.aca.2020.12.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
Lead (Pb) is a highly toxic heavy metal of great environmental and health concerns, and interestingly Pb2+ has played important roles in nucleic acids chemistry. Since 2000, using DNA for selective detection of Pb2+ has become a rapidly growing topic in the analytical community. Pb2+ can serve as the most active cofactor for RNA-cleaving DNAzymes including the GR5, 17E and 8-17 DNAzymes. Recently, Pb2+ was found to promote a porphyrin metalation DNAzyme named T30695. In addition, Pb2+ can tightly bind to various G-quadruplex sequences inducing their unique folding and binding to other molecules such as dyes and hemin. The peroxidase-like activity of G-quadruplex/hemin complexes was also used for Pb2+ sensing. In this article, these Pb2+ recognition mechanisms are reviewed from fundamental chemistry to the design of fluorescent, colorimetric, and electrochemical biosensors. In addition, various signal amplification mechanisms such as rolling circle amplification, hairpin hybridization chain reaction and nuclease-assisted methods are coupled to these sensing methods to drive up sensitivity. We mainly cover recent examples published since 2015. In the end, some practical aspects of these sensors and future research opportunities are discussed.
Collapse
Affiliation(s)
- Yongjie Yang
- Department of Food and Biological Sciences, College of Agriculture, Yanbian University, Yanji, 133002, China; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Weixuan Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada; Water Institute, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
12
|
Platform- and label-free detection of lead ions in environmental and laboratory samples using G-quadraplex probes by circular dichroism spectroscopy. Sci Rep 2020; 10:20461. [PMID: 33235290 PMCID: PMC7686487 DOI: 10.1038/s41598-020-77449-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Guanine-rich quadruplex (G-QD) are formed by conversion of nucleotides with specific sequences by stabilization of positively charged K+ or Na+. These G-QD structures differentially absorb two-directional (right- and left-handed) circularly polarized light, which can discriminate the parallel or anti-parallel structures of G-QDs. In this study, G-QDs stabilized by Pb2+ were analyzed by a circular dichroism (CD) spectroscopy to determine Pb2+ concentration in water samples. Thrombin aptamer (TBA), PS2.M, human telomeric DNA (HTG), AGRO 100, and telomeric related sequence (T2) were studied to verify their applicability as probes for platform- and label-free detection of Pb2+ in environmental as well as laboratory samples. Among these nucleotides, TBA and PS2.M exhibited higher binding constants for Pb2+, 1.20-2.04 × 106/M at and 4.58 × 104-1.09 × 105/M at 100 micromolar and 100 mM K+ concentration, respectively. They also exhibited excellent selectivity for Pb2+ than for Al3+, Cu2+, Ni2+, Fe3+, Co2+, and Cr2+. When Pb2+ was spiked into an effluent sample from a wastewater treatment plant (WWTP), its existence was detected by CD spectroscopy following a simple addition of TBA or PS2.M. By the addition of TBA and PS2.M, the Pb2+ signals were observed in effluent samples over 0.5 micromolar (100 ppb) concentration. Furthermore, PS2.M caused a Pb2+-specific absorption band in the effluent sample without spiking of Pb2+, and could be induced to G-QD structure by the background Pb2+ concentration in the effluent, 0.159 micromolar concentration (3.30 ppb). Taken together, we propose that TBA and PS2.M are applicable as platform- and label-free detection probes for monitoring Pb2+ in environmental samples such as discharged effluent from local WWTPs, using CD spectroscopy.
Collapse
|
13
|
A thiamonomethinecyanine probe for detection of Pb2+ based on transformation from dimer to monomer by aptamer. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Ma G, Yu Z, Zhou W, Li Y, Fan L, Li X. Investigation of Na+ and K+ Competitively Binding with a G-Quadruplex and Discovery of a Stable K+–Na+-Quadruplex. J Phys Chem B 2019; 123:5405-5411. [DOI: 10.1021/acs.jpcb.9b02823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ge Ma
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ze Yu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei Zhou
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|