1
|
Chen M, Hu Z, Shi J, Xie Z. Human β-defensins and their synthetic analogs: Natural defenders and prospective new drugs of oral health. Life Sci 2024; 346:122591. [PMID: 38548013 DOI: 10.1016/j.lfs.2024.122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
As a family of cationic host defense peptides, human β-defensins (HBDs) are ubiquitous in the oral cavity and are mainly synthesized primarily by epithelial cells, serving as the primary barrier and aiming to prevent microbial invasion, inflammation, and disease while maintaining physiological homeostasis. In recent decades, there has been great interest in their biological functions, structure-activity relationships, mechanisms of action, and therapeutic potential in oral diseases. Meanwhile, researchers are dedicated to improving the properties of HBDs for clinical application. In this review, we first describe the classification, structural characteristics, functions, and mechanisms of HBDs. Next, we cover the role of HBDs and their synthetic analogs in oral diseases, including dental caries and pulp infections, periodontitis, peri-implantitis, fungal/viral infections and oral mucosal diseases, and oral squamous cell carcinoma. Finally, we discuss the limitations and challenges of clinical translation of HBDs and their synthetic analogs, including, but not limited to, stability, bioavailability, antimicrobial activity, resistance, and toxicity. Above all, this review summarizes the biological functions, mechanisms of action, and therapeutic potential of both natural HBDs and their synthetic analogs in oral diseases, as well as the challenges associated with clinical translation, thus providing substantial insights into the laboratory development and clinical application of HBDs in oral diseases.
Collapse
Affiliation(s)
- Mumian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
2
|
Cao Z, Zhao L, Yan T, Liu L. Effects of C-Terminal Lys-Arg Residue of AapA1 Protein on Toxicity and Structural Mechanism. Toxins (Basel) 2023; 15:542. [PMID: 37755968 PMCID: PMC10537873 DOI: 10.3390/toxins15090542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Previous experimental investigations have established the indispensability of the C-terminal Lys-Arg residues in the toxic activity of the AapA1 toxin protein. AapA1 is classified as a type I toxin-antitoxin (TA) bacterial toxin, and the precise impact of the C-terminal Lys-Arg residues on its structure and mechanism of action remains elusive. To address this knowledge gap, the present study employed molecular dynamics (MD) and enhanced sampling Well-tempered Two-dimensional Metadynamics (2D-MetaD) simulations to examine the behavior of the C-terminal Lys-Arg residues of truncated AapA1 toxin (AapA1-28) within the inner membrane of Escherichia coli. Specifically, the study focused on the elucidation of possible conformation states of AapA1-28 protein in POPE/POPG (3:1) bilayers and their interactions between the protein and POPE/POPG (3:1) bilayers. The findings of our investigation indicate that the AapA1-28 protein does not adopt a vertical orientation upon membrane insertion; rather, it assumes an angled conformation, with the side chain of Lys-23 directed toward the upper layer of the membrane. This non-transmembrane conformation of AapA1-28 protein impedes its ability to form pores within the membrane, resulting in reduced toxicity towards Escherichia coli. These results suggest that C-Terminal positively charged residues are essential for electrostatic binding to the negatively charged head group of bottom bilayer membrane, which stabilize the transmembrane conformation. These outcomes contribute to our comprehension of the impact of C-terminal charged residues on the structure and functionality of membrane-associated proteins, and provide an improved understanding of how protein sequence influences the antimicrobial effect.
Collapse
Affiliation(s)
- Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (L.Z.); (T.Y.)
| | - Liling Zhao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (L.Z.); (T.Y.)
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China
| | - Tingting Yan
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (L.Z.); (T.Y.)
| | - Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (L.Z.); (T.Y.)
| |
Collapse
|
3
|
Deniz Tekin E, Calisir M. Investigation of human β-defensins 1, 2 and 3 in human saliva by molecular dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:100. [PMID: 36542178 DOI: 10.1140/epje/s10189-022-00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Human β-defensins present in saliva have a broad spectrum of antimicrobial activities that work against infections in oral cavity. To provide a better understanding of these molecules' properties and functions at the molecular level, we have investigated and compared the important structural properties of human β-defensin-1, -2 and -3 using molecular dynamics simulations. Our results have shown that human β-defensin-3 has a more flexible structure in water than the other two because of its high hydrophilicity, low β-sheet content and high repulsive forces between its charged residues. Moreover, we found that the location of the salt bridges is important in protein's stability in water. Molecular dynamics simulations of human β-defensins 1, 2 and 3 revealed that the hbd-3 is more flexible in water than hbd-1 and hbd-2.
Collapse
Affiliation(s)
- E Deniz Tekin
- Faculty of Engineering, University of Turkish Aeronautical Association, 06790, Ankara, Turkey.
| | - Metin Calisir
- Faculty of Dentistry, Adıyaman University, 02000, Adıyaman, Turkey
| |
Collapse
|
4
|
Awang T, Pongprayoon P. The penetration of human defensin 5 (HD5) through bacterial outer membrane: simulation studies. J Mol Model 2021; 27:291. [PMID: 34546425 DOI: 10.1007/s00894-021-04915-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
Human α-defensin 5 (HD5) is one of cationic antimicrobial peptides which plays a crucial role in an innate immune system in human body. HD5 shows the killing activity against a broad spectrum of pathogenic bacteria by making a pore in a bacterial membrane and penetrating into a cytosol. Nonetheless, its pore-forming mechanisms remain unclear. Thus, in this work, the constant-velocity steered molecular dynamics (SMD) simulation was used to simulate the permeation of a dimeric HD5 into a gram-negative lipopolysaccharide (LPS) membrane model. Arginine-rich HD5 is found to strongly interact with a LPS surface. Upon arrival, arginines on HD5 interact with lipid A head groups (a top part of LPS) and then drag these charged moieties down into a hydrophobic core resulting in the formation of water-filled pore. Although all arginines are found to interact with a membrane, Arg13 and Arg32 appear to play a dominant role in the HD5 adsorption on a gram-negative membrane. Furthermore, one chain of a dimeric HD5 is required for HD5 adhesion. The interactions of arginine-lipid A head groups play a major role in adhering a cationic HD5 on a membrane surface and retarding a HD5 passage in the meantime.
Collapse
Affiliation(s)
- Tadsanee Awang
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand. .,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
5
|
Laneri S, Brancaccio M, Mennitti C, De Biasi MG, Pero ME, Pisanelli G, Scudiero O, Pero R. Antimicrobial Peptides and Physical Activity: A Great Hope against COVID 19. Microorganisms 2021; 9:1415. [PMID: 34209064 PMCID: PMC8304224 DOI: 10.3390/microorganisms9071415] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial peptides (AMPs), α- and β-defensins, possess antiviral properties. These AMPs achieve viral inhibition through different mechanisms of action. For example, they can: (i) bind directly to virions; (ii) bind to and modulate host cell-surface receptors, disrupting intracellular signaling; (iii) function as chemokines to augment and alter adaptive immune responses. Given their antiviral properties and the fact that the development of an effective coronavirus disease 2019 (COVID-19) treatment is an urgent public health priority, they and their derivatives are being explored as potential therapies against COVID-19. These explorations using various strategies, range from their direct interaction with the virus to using them as vaccine adjuvants. However, AMPs do not work in isolation, specifically in their role as potent immune modulators, where they interact with toll-like receptors (TLRs) and chemokine receptors. Both of these receptors have been shown to play roles in COVID-19 pathogenesis. In addition, it is known that a healthy lifestyle accompanied by controlled physical activity can represent a natural weapon against COVID-19. In competitive athletes, an increase in serum defensins has been shown to function as self-protection from the attack of microorganisms, consequently a controlled physical activity could act as a support to any therapies in fighting COVID-19. Therefore, including information on all these players' interactions would produce a complete picture of AMP-based therapies' response.
Collapse
Affiliation(s)
- Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Montesano, 80138 Naples, Italy; (S.L.); (M.G.D.B.)
| | - Mariarita Brancaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
| | - Margherita G. De Biasi
- Department of Pharmacy, University of Naples Federico II, Via Montesano, 80138 Naples, Italy; (S.L.); (M.G.D.B.)
| | - Maria Elena Pero
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (M.E.P.); (G.P.)
| | - Giuseppe Pisanelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (M.E.P.); (G.P.)
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
- Ceinge Biotecnologie Avanzate S.C.aR.L., 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
- Ceinge Biotecnologie Avanzate S.C.aR.L., 80131 Naples, Italy
| |
Collapse
|
6
|
Aronica PGA, Reid LM, Desai N, Li J, Fox SJ, Yadahalli S, Essex JW, Verma CS. Computational Methods and Tools in Antimicrobial Peptide Research. J Chem Inf Model 2021; 61:3172-3196. [PMID: 34165973 DOI: 10.1021/acs.jcim.1c00175] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolution of antibiotic-resistant bacteria is an ongoing and troubling development that has increased the number of diseases and infections that risk going untreated. There is an urgent need to develop alternative strategies and treatments to address this issue. One class of molecules that is attracting significant interest is that of antimicrobial peptides (AMPs). Their design and development has been aided considerably by the applications of molecular models, and we review these here. These methods include the use of tools to explore the relationships between their structures, dynamics, and functions and the increasing application of machine learning and molecular dynamics simulations. This review compiles resources such as AMP databases, AMP-related web servers, and commonly used techniques, together aimed at aiding researchers in the area toward complementing experimental studies with computational approaches.
Collapse
Affiliation(s)
- Pietro G A Aronica
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Lauren M Reid
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Chemistry, University of Southampton, Highfield Southampton, Hampshire, U.K. SO17 1BJ.,MedChemica Ltd, Alderley Park, Macclesfield, Cheshire, U.K. SK10 4TG
| | - Nirali Desai
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Division of Biological and Life Sciences, Ahmedabad University, Central Campus, Ahmedabad, Gujarat, India 380009
| | - Jianguo Li
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Singapore Eye Research Institute, 20 College Road Discovery Tower, Singapore 169856
| | - Stephen J Fox
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Shilpa Yadahalli
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Highfield Southampton, Hampshire, U.K. SO17 1BJ
| | - Chandra S Verma
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore.,School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, 637551 Singapore
| |
Collapse
|
7
|
Yeasmin R, Brewer A, Fine LR, Zhang L. Molecular Dynamics Simulations of Human Beta-Defensin Type 3 Crossing Different Lipid Bilayers. ACS OMEGA 2021; 6:13926-13939. [PMID: 34095684 PMCID: PMC8173616 DOI: 10.1021/acsomega.1c01803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Human β defensin type 3 (hBD-3) is a small cationic cysteine-rich peptide. It has a broad spectrum of antimicrobial activities. However, at high concentrations, it also shows hemolytic activity by interrupting red blood cells. To understand the selectivity of hBD-3 disrupting cell membranes, investigating the capability of hBD-3 translocating through different membranes is important. Since hBD-3 in the analogue form in which all three pairs of disulfide bonds are broken has similar antibacterial activities to the wild-type, this project investigates the structure and dynamics of an hBD-3 analogue in monomer, dimer, and tetramer forms through both zwitterionic and negatively charged lipid bilayers using molecular dynamics (MD) simulations. One tetramer structure of hBD-3 was predicted by running all-atom MD simulations on hBD-3 in water at a high concentration, which was found to be stable in water during 400 ns all-atom simulations based on root-mean-squared deviation, root-mean-squared fluctuation, buried surface area, and binding interaction energy calculations. After that, hBD-3 in different forms was placed inside different membranes, and then steered MD simulation was conducted to pull the hBD-3 out of the membrane along the z-direction to generate different configurational windows to set up umbrella-sampling (US) simulations. Because extensive sampling is important to obtain accurate free energy barriers, coarse-grained US MD simulations were performed in each window. Based on the long-term simulation result, membrane thinning was found near hBD-3 in different lipid bilayers and in different hBD-3 oligomer systems. By calculating the root-mean-squared deviation of the z-coordinate of hBD-3 molecules, rotation of the oligomer inside the bilayer and stretching of the oligomer structure along the z-direction were observed. Although reorientation of lipid heads toward the hBD-3 tetramer was observed based on the density profile calculation, the order parameter calculation shows that hBD-3 disrupts 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipids more significantly and makes it less ordered than on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids. Calculating the free energy of hBD-3 through different lipid bilayers, it was found that generally hBD-3 encounters a lower energy barrier through negatively charged lipid membranes than the zwitterionic membrane. hBD-3 in different forms needs to overcome a lower energy barrier crossing the combined POPC+POPS bilayer through the POPS leaflet than through the POPC leaflet. Besides that, the potential of mean force result suggests that hBD-3 forms an oligomer translocating negatively charged lipid membranes at a low concentration. This study supplied new insight into the antibacterial mechanism of hBD-3 through different membranes.
Collapse
|
8
|
Zhang L, Ghosh SK, Basavarajappa SC, Muller-Greven J, Penfield J, Brewer A, Ramakrishnan P, Buck M, Weinberg A. Molecular dynamics simulations and functional studies reveal that hBD-2 binds SARS-CoV-2 spike RBD and blocks viral entry into ACE2 expressing cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.07.425621. [PMID: 33442698 PMCID: PMC7805467 DOI: 10.1101/2021.01.07.425621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New approaches to complement vaccination are needed to combat the spread of SARS-CoV-2 and stop COVID-19 related deaths and long-term medical complications. Human beta defensin 2 (hBD-2) is a naturally occurring epithelial cell derived host defense peptide that has antiviral properties. Our comprehensive in-silico studies demonstrate that hBD-2 binds the site on the CoV-2-RBD that docks with the ACE2 receptor. Biophysical and biochemical assays confirm that hBD-2 indeed binds to the CoV-2-receptor binding domain (RBD) (KD ~ 300 nM), preventing it from binding to ACE2 expressing cells. Importantly, hBD-2 shows specificity by blocking CoV-2/spike pseudoviral infection, but not VSV-G mediated infection, of ACE2 expressing human cells with an IC50 of 2.4± 0.1 μM. These promising findings offer opportunities to develop hBD-2 and/or its derivatives and mimetics to safely and effectively use as novel agents to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Liqun Zhang
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505
- contributed equally
| | - Santosh K. Ghosh
- Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44124
- contributed equally
| | - Shrikanth C. Basavarajappa
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44124
- contributed equally
| | - Jeannine Muller-Greven
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44124
| | - Jackson Penfield
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505
| | - Ann Brewer
- Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505
| | | | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44124
| | - Aaron Weinberg
- Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44124
- Lead contact
| |
Collapse
|
9
|
Zhang L. Disulfide Bonds Affect the Binding Sites of Human β Defensin Type 3 on Negatively Charged Lipid Membranes. J Phys Chem B 2020; 124:2088-2100. [PMID: 32091905 DOI: 10.1021/acs.jpcb.9b10529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human β defensin type 3 (hBD-3) is a small natural antimicrobiotic. It is strongly cationic and has six cysteine residues which can form three pairs of intramolecular disulfide bonds under oxidized condition. Those disulfide bonds can break under reducing condition. However, the antibacterial activities of hBD-3 in its wild-type and analog forms are similar. In this project, the structure and dynamics of hBD-3 were investigated by running simulations on hBD-3 in its wild-type and analog forms in solvent, binding to negatively charged lipid bilayers, and self-assembly with POPG lipids. It was found that the RMSFs of hBD-3 in both its wild-type and analog forms are similar in solvent, while they are very diverse depending on the binding sites of hBD-3 with negatively charged bilayers. Calculating both the distance map and insertion depths for 18 hBD-3 molecules binding on the POPG bilayer, hBD-3 in its analog form binds stably with the POPG bilayer through the head and loop regions, while hBD-3 wild-type binds with the POPG bilayer on the two loop regions stably. hBD-3 analog caused membrane thinning and disrupted the POPG lipids more significantly than the wildtype. Based on the self-assembly simulations, hBD-3 monomer can bind with and embed inside the negatively charged POPG lipid membrane and have more contacts with the POPG lipid heads than with tails. The current work emphasized the structural diversity of hBD-3 interacting with negatively charged lipid membrane affected by the disulfide bonding states.
Collapse
Affiliation(s)
- Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| |
Collapse
|
10
|
Kang X, Elson C, Penfield J, Kirui A, Chen A, Zhang L, Wang T. Integrated solid-state NMR and molecular dynamics modeling determines membrane insertion of human β-defensin analog. Commun Biol 2019; 2:402. [PMID: 31701030 PMCID: PMC6825183 DOI: 10.1038/s42003-019-0653-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Human β-defensins (hBD) play central roles in antimicrobial activities against various microorganisms and in immune-regulation. These peptides perturb phospholipid membranes for function, but it is not well understood how defensins approach, insert and finally disrupt membranes on the molecular level. Here we show that hBD-3 analogs interact with lipid bilayers through a conserved surface that is formed by two adjacent loops in the solution structure. By integrating a collection of 13C, 1H and 31P solid-state NMR methods with long-term molecular dynamic simulations, we reveal that membrane-binding rigidifies the peptide, enhances structural polymorphism, and promotes β-strand conformation. The peptide colocalizes with negatively charged lipids, confines the headgroup motion, and deforms membrane into smaller, ellipsoidal vesicles. This study designates the residue-specific, membrane-bound topology of hBD-3 analogs, serves as the basis for further elucidating the function-relevant structure and dynamics of other defensins, and facilitates the development of defensin-mimetic antibiotics, antifungals, and anti-inflammatories.
Collapse
Affiliation(s)
- Xue Kang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Christopher Elson
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505 USA
| | - Jackson Penfield
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505 USA
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Adrian Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505 USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
11
|
Permeation of beta-defensin-3 encapsulated with polyethylene glycol in lung surfactant models at air-water interface. Colloids Surf B Biointerfaces 2019; 182:110357. [DOI: 10.1016/j.colsurfb.2019.110357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 11/21/2022]
|