1
|
Ni H, Wang Y, Zhang D, Sun X, Wang Y, Li Y, Liu D, Xu X. The influence of π-conjugated bridge on photoabsorption and charge transfer characteristics of Diketo-Pyrrolo-Pyrrole derivatives. J Mol Graph Model 2025; 138:109037. [PMID: 40168733 DOI: 10.1016/j.jmgm.2025.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
In this work, three D-π-A-π-D structural Diketo-Pyrrolo-Pyrrole (DPP) derivatives have been designed and simulated, which have the same electron acceptor and donor connected by different π-conjugated bridges. The intramolecular charge transfer (ICT) effects of different electron transport structures on the nonlinear optical response as well as the mechanism have been explored. The results show that a suitable electronic transport structure can enhance the nonlinear optical response of the molecules and expand the absorption spectrum to the long wavelength range, which is of great significance for the practical applications. Impressively, the TDM and CDD maps of molecule constructed with thiophene as π-conjugated bridge exhibit striking excitation response, intense ICT effect as well as a minimal band gap value. The results in this work provide valuable references for the design and synthesis of novel nonlinear optical materials by modifying the electron channel structures.
Collapse
Affiliation(s)
- Haoran Ni
- School of Science, Physics Department, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Yaochuan Wang
- School of Science, Physics Department, Dalian Maritime University, Dalian, 116026, People's Republic of China.
| | - Ding Zhang
- School of Science, Physics Department, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Xue Sun
- School of Science, Physics Department, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Yizhuo Wang
- School of Science, Physics Department, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Yu Li
- School of Science, Physics Department, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Dajun Liu
- School of Science, Physics Department, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Xuesong Xu
- School of Science, Physics Department, Dalian Maritime University, Dalian, 116026, People's Republic of China
| |
Collapse
|
2
|
Zou Y, Jin H, Ma Q, Zheng Z, Weng S, Kolataj K, Acuna G, Bald I, Garoli D. Advances and applications of dynamic surface-enhanced Raman spectroscopy (SERS) for single molecule studies. NANOSCALE 2025; 17:3656-3670. [PMID: 39745189 DOI: 10.1039/d4nr04239e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Dynamic surface-enhanced Raman spectroscopy (SERS) is nowadays one of the most interesting applications of SERS, in particular for single molecule studies. In fact, it enables the study of real-time processes at the molecular level. This review summarizes the latest developments in dynamic SERS techniques and their applications, focusing on new instrumentation, data analysis methods, temporal resolution and sensitivity improvements, and novel substrates. We highlight the progress and applications of single-molecule dynamic SERS in monitoring chemical reactions, catalysis, biomolecular interactions, conformational dynamics, and real-time sensing and detection. We aim to provide a comprehensive review on its advancements, applications as well as its current challenges and development frontiers.
Collapse
Affiliation(s)
- Yanqiu Zou
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Huaizhou Jin
- Key Laboratory of Quantum Precision Measurement, College of Physics, Zhejiang University of Technology, Hangzhou, China
| | - Qifei Ma
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Zhenrong Zheng
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shukun Weng
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Karol Kolataj
- Department of Physics, University of Fribourg, Fribourg CH 1700, Switzerland
| | - Guillermo Acuna
- Department of Physics, University of Fribourg, Fribourg CH 1700, Switzerland
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Denis Garoli
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Scienze e metodi dell'ingegneria, Università degli Studi di Modena e Reggio Emilia, 42122 Reggio Emilia, Italy
| |
Collapse
|
3
|
Olbrich K, Setkowicz Z, Kawon K, Czyzycki M, Janik-Olchawa N, Carlomagno I, Aquilanti G, Chwiej J. Vibrational spectroscopy methods for investigation of the animal models of glioblastoma multiforme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123230. [PMID: 37586277 DOI: 10.1016/j.saa.2023.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. It is highly lethal disease, as only 25% of patients survive longer than 1 year and only 5% more than 5 years from the diagnosis. To search for the new, more effective methods of treatment, the understanding of mechanisms underlying the process of tumorigenesis is needed. The new light on this problem may be shed by the analysis of biochemical anomalies of tissues affected by tumor growth. Therefore, in the present work, we applied the Fourier transform infrared (FTIR) and Raman microspectroscopy to evaluate changes in the distribution and structure of biomolecules appearing in the rat brain as a result of glioblastoma development. In turn, synchrotron X-ray fluorescence microscopy was utilized to determine the elemental anomalies appearing in the nervous tissue. To achieve the assumed goals of the study animal models of GBM were used. The rats were subjected to the intracranial implantation of glioma cells with different degree of invasiveness. For spectroscopic investigation brain slices taken from the area of cancer cells administration were used. The obtained results revealed, among others, the decrease content of lipids and compounds containing carbonyl groups, compositional and structural changes of proteins as well as abnormalities in the distribution of low atomic number elements within the region of tumor.
Collapse
Affiliation(s)
- Karolina Olbrich
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Kamil Kawon
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Mateusz Czyzycki
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Natalia Janik-Olchawa
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | | | | | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland.
| |
Collapse
|
4
|
Applications of Single-Molecule Vibrational Spectroscopic Techniques for the Structural Investigation of Amyloid Oligomers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196448. [PMID: 36234985 PMCID: PMC9573641 DOI: 10.3390/molecules27196448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Amyloid oligomeric species, formed during misfolding processes, are believed to play a major role in neurodegenerative and metabolic diseases. Deepening the knowledge about the structure of amyloid intermediates and their aggregation pathways is essential in understanding the underlying mechanisms of misfolding and cytotoxicity. However, structural investigations are challenging due to the low abundance and heterogeneity of those metastable intermediate species. Single-molecule techniques have the potential to overcome these difficulties. This review aims to report some of the recent advances and applications of vibrational spectroscopic techniques for the structural analysis of amyloid oligomers, with special focus on single-molecule studies.
Collapse
|