1
|
Wang B, Jiang X, Liu L, Wu BC, Zhao D. Effect of Anions on Deformation of Gallium-Based Liquid Metal in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23483-23490. [PMID: 39436096 DOI: 10.1021/acs.langmuir.4c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
In this study, deformation behaviors of gallium-based liquid metals in acidified cupric sulfate or cupric chloride solutions with varying concentrations of chloride anion or sulfate anion were investigated to explore their potential applications in soft machines and electronics. Gallium-based liquid metals are known for their unique deformability, making them promising materials for various fields. Previous research has shown that deformation of the liquid metal can be achieved in the presence of acidified cupric or ferric salts. However, the specific influence of different anions on the deformation process remains unclear. Our findings indicate that the deformation rate of the liquid metal increases with higher concentrations of chloride ions and decreases with higher concentrations of sulfate ions in the solution. UV-vis absorbance spectra of the solutions were analyzed to identify the formation of hydrated cupric cations. It was observed that increasing the concentration of Cl- ions promotes the formation of cupric-chloro complexes, thereby reducing the concentration of hydrated cupric ions in the solution. Furthermore, the addition of sulfate ions to the solution enhances the ionic strength of the medium, leading to the dissociation of cupric-chloro complexes. Additionally, sulfate ions can form insoluble layers with gallium ions, which impede the deformation of the liquid metal. The deformation rate of the liquid metal was found to be inversely correlated with the concentration of cupric ions in the solution. These results provide valuable insights into the deformable behavior of gallium-based liquid metals and their potential applications in liquid metal-based soft robots. This study highlights the importance of understanding the role of different anions in the deformation process of liquid metals, shedding light on the design and optimization of soft machines and electronics utilizing these materials.
Collapse
Affiliation(s)
- Bingxing Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaoying Jiang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Liheng Liu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bin-Chao Wu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Donglin Zhao
- Division of Chemical and Energy Engineering, School of Engineering, London South Bank University, London SE1 0AA, United Kingdom
| |
Collapse
|
2
|
Qi J, Yang S, Jiang Y, Cheng J, Wang S, Rao Q, Jiang X. Liquid Metal-Polymer Conductor-Based Conformal Cyborg Devices. Chem Rev 2024; 124:2081-2137. [PMID: 38393351 DOI: 10.1021/acs.chemrev.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.
Collapse
Affiliation(s)
- Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P. R. China
| | - Jinhao Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qingyan Rao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
3
|
Ye J, Xiang W, Cheng C, Bao W, Zhang Q. Principles and methods of liquid metal actuators. SOFT MATTER 2024; 20:2196-2211. [PMID: 38372963 DOI: 10.1039/d3sm01756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
As a promising material, liquid metals (LMs) have gained considerable interest in the field of soft robotics due to their ability to move as designed routines or change their shape dramatically under external stimuli. Inspired by the science fiction film Terminator, tremendous efforts have been devoted to liquid robots with high compliance and intelligence. How to manipulate LM droplets is crucial to achieving this goal. Accordingly, this review is dedicated to presenting the principles driving LMs and summarizing the potential methods to develop LM actuators of high maneuverability. Moreover, the recent progress of LM robots based on these methods is overviewed. The challenges and prospects of implementing autonomous robots have been proposed.
Collapse
Affiliation(s)
- Jiao Ye
- School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Wentao Xiang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Cheng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendi Bao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wang Y, Li L, Liang S, Sun K, Jiao C, Wang Q, Hu L. Liquid Metal pH Morphology Sensor Used for Biological Microenvironment Detection. Anal Chem 2022; 94:17312-17319. [PMID: 36446630 DOI: 10.1021/acs.analchem.2c04357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
pH is one of the important parameters of a biological microenvironment, which is closely related to cell growth, development, vitality, division, and differentiation. Monitoring the pH of a microenvironment is helpful to monitor the cell metabolism as well as to understand the cellular life cycle. The sensitivity of liquid metals (LMs) to hydrogen ions has aroused our interest. Here, we propose a novel but facile pH sensor using liquid gallium (LM for short) droplet morphological change as the readout. The pH sensing characteristics of the LM droplet were examined, especially the shape response. LM can form solid native oxide skin rapidly in oxygenated solution, and the oxide layer will be removed in acidic or alkaline solutions, which will cause a great change in surface tension. The phenomenon is the change of LM morphology from macroscopic observation. We explored the electrochemical characteristics of LM at different pH values, explained the mechanism of surface change, and calibrated the relationship curve between LM morphology and pH and the interference of impurity ions on the sensor. Finally, we proposed a detection algorithm for the LM pH morphology sensor and tried to automatically detect pH with a mobile app, which was applied to the pH detection of cell culture solution. We believe that the response characteristics of LM to hydrogen ions have great potential in microenvironment detection.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Liangtao Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Shuting Liang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Kang Sun
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Caicai Jiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Qian Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Liang Hu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| |
Collapse
|
5
|
Duan M, Zhu X, Shan X, Wang H, Chen S, Liu J. Responsive Liquid Metal Droplets: From Bulk to Nano. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1289. [PMID: 35457997 PMCID: PMC9026530 DOI: 10.3390/nano12081289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Droplets exist widely in nature and play an extremely important role in a broad variety of industrial processes. Typical droplets, including water and oil droplets, have received extensive attention and research, however their single properties still cannot meet diverse needs. Fortunately, liquid metal droplets emerging in recent years possess outstanding properties, including large surface tension, excellent electrical and thermal conductivity, convenient chemical processing, easy transition between liquid and solid phase state, and large-scale deformability, etc. More interestingly, liquid metal droplets with unique features can respond to external factors, including the electronic field, magnetic field, acoustic field, chemical field, temperature, and light, exhibiting extraordinary intelligent response characteristics. Their development over the past decade has brought substantial breakthroughs and progress. To better promote the advancement of this field, the present article is devoted to systematically summarizing and analyzing the recent fundamental progress of responsive liquid metal droplets, not only involving droplet characteristics and preparation methods, but also focusing on their diverse response behaviors and mechanisms. On this basis, the challenges and prospects related to the following development of liquid metal droplets are also proposed. In the future, responsive liquid metal droplets with a rapid development trend are expected to play a key role in soft robots, biomedicine, smart matter, and a variety of other fields.
Collapse
Affiliation(s)
- Minghui Duan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Xiaohui Shan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Hongzhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Sen Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
- Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Gao J, Ye J, Chen S, Gong J, Wang Q, Liu J. Liquid Metal Foaming via Decomposition Agents. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17093-17103. [PMID: 33788538 DOI: 10.1021/acsami.1c01731] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an emerging functional material, the liquid metal has demonstrated its encouraging potential in several areas with practical trials, while its global uniformity including high density and limited macroscopic interface might become a barrier for some tough application scenarios. Here, we proposed the concept of liquid metal foaming via decomposition agents, aiming to develop a generalized way to make porous foam metallic fluid, which would pave the way in achieving more structured features and adaptability of liquid metals. By introducing a greenness strategy with the help of an ecofriendly foaming agent, we realized a series of designed targeted liquid metal foams (LMFs). Compared with common liquid metals, LMFs possess many excellent properties, such as abundant interfaces, tunable conductivity, and adjustable stiffness, due to the controllable regulation of their porous structure. According to these unique characteristics, diversified values of LMFs were obtained. Benefiting from the naturally enriched interface in LMFs, the hydrogen evolution of LMFs in neutral deionized water was more efficient and more productive. Additionally, the compact LMF-air battery with high performance was originally manufactured. Moreover, the tunable LMF-enabled four-dimensional (4D) electromagnetic shielding materials possess excellent shielding performance. This material could open up broad vistas for the application of LMs.
Collapse
Affiliation(s)
- Jianye Gao
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Ye
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Chen
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Gong
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Liu
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Xu B, Chang G, Li R. A versatile approach for preparing stable and high concentration liquid metal nanoparticles on a large scale. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1798776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Bingbing Xu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Guangtao Chang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Ruoxin Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Chen S, Yang X, Wang H, Wang R, Liu J. Al-assisted high frequency self-powered oscillations of liquid metal droplets. SOFT MATTER 2019; 15:8971-8975. [PMID: 31603451 DOI: 10.1039/c9sm01899a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is of great scientific and practical significance to explore and imitate the rhythmic oscillating behaviors. Achieving oscillating behaviours via liquid metal is regarded as an excellent strategy and the "mercury beating heart" is a well-known representative. However, the oscillating behaviours achieved over the past few decades either require external power supply or exhibit low frequency. Here, intriguing Al-assisted high frequency self-powered oscillations of liquid metal droplets were discovered and the general mechanisms were interpreted. For this dynamic process, Al is added into the liquid metal for generating gas and activating liquid metal by forming countless tiny galvanic cells and an iron plate is used to passivate the liquid metal via electrochemical oxidation. Therefore, the high frequency self-fueled oscillations can be achieved due to the synergistic effect of these two factors. Furthermore, we predict and confirm that the oscillating behaviors can also be achieved on other eligible substrates (e.g., Ni plate) based on the proposed universal mechanism. The ability to achieve high frequency oscillations of liquid metal droplets promises rich opportunities in developing self-powered soft oscillators.
Collapse
Affiliation(s)
- Sen Chen
- Beijing Key Lab of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China and Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Xiaohu Yang
- Science and Technology on Thermal Energy and Power Laboratory, Wuhan Second Ship Design and Research Institute, Wuhan 430205, China
| | - Hongzhang Wang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronghang Wang
- Beijing Key Lab of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China and Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Jing Liu
- Beijing Key Lab of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China and Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|