1
|
Basu J, Soni A, Athale CA. Physical effects of crowdant size and concentration on collective microtubule polymerization. Biophys J 2025; 124:789-806. [PMID: 39885688 PMCID: PMC11897549 DOI: 10.1016/j.bpj.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
The polymerization of cytoskeletal filaments is regulated by both biochemical pathways, as well as physical factors such as crowding. The effect of crowding in vivo emerges from the density of intracellular components. Due to the complexity of the intracellular environment, most studies are based on either in vitro reconstitution or theory. Crowding agent (crowdants) size has been shown to influence polymerization of both actin and microtubules (MTs). Previously, the elongation rates of MT dynamics observed at single filament scale were reported to decrease with increasing concentrations of small but not large crowdants, and this correlated with in vivo viscosity increases. However, the exact nature of the connection between viscosity, crowdant size, nucleation, and MT elongation has remained unclear. Here, we use in vitro reconstitution of bulk MT polymerization kinetics and microscopy to examine the collective effect of crowdant molecular weight, volume occupancy, and viscosity on elongation and spontaneous polymerization. We find MT elongation rates obtained from bulk polymerization decrease in the presence of multiple low-molecular weight (LMW) crowdants, while increasing with high-molecular weight (HMW) crowdants. Lattice Monte Carlo simulations of an effective model of collective polymerization demonstrate reduced polymerization rates arise due to decrease in monomer diffusion due to small-sized crowdants. However, MT polymerization in the absence of nucleators, de novo, shows a crowdant size independence of polymerization rate and critical concentration, depending solely on concentration of the crowdant. In microscopy, we find LMW crowdants result in short but many filaments, while HMW crowdants increase filament density, but have little effect on lengths. The effect of crowdant volume fraction ϕC and size in de novo polymerization match simulations, demonstrating crowdants affect elongation independent of nucleation. Thus, the effect of viscosity on collective MT dynamics, i.e., filament numbers and lengths, shows crowdant size dependence for elongation, but independence for de novo polymerization.
Collapse
Affiliation(s)
- Jashaswi Basu
- Division of Biology, IISER Pune, Pashan, Pune, India
| | - Aman Soni
- Division of Biology, IISER Pune, Pashan, Pune, India
| | | |
Collapse
|
2
|
Mersch SA, McCue C, Aristidou A, Sheets ED, Boersma AJ, Heikal AA. Translational diffusion, molecular brightness, and energy transfer analysis of mEGFP-linker-mScarlet-I crowding biosensor using fluorescence correlation spectroscopy. Phys Chem Chem Phys 2024; 26:28808-28818. [PMID: 39530201 DOI: 10.1039/d4cp03850a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recently, we have investigated the sensitivity of an mEGFP-linker-mScarlet-I construct (GE2.3) in response to macromolecular crowding using ensemble time-resolved two-photon (2P) fluorescence measurements [Mersch et al., Phys. Chem. Chem. Phys. 2024, 26(5), 3927-3940] as a point of reference for developing a single-molecule approach for Förster resonance energy transfer (FRET). Here, we investigate the fluorescence fluctuations, FRET, molecular brightness, and translational diffusion of GE2.3 as a model system using fluorescence correlation spectroscopy (FCS), at the single molecule level, as a function of the excitation and detection wavelengths of the donor (mEGFP) and the acceptor (mScarlet-I). We hypothesize that the molecular brightness (number of fluorescence photons per molecule) of the donor of GE2.3, in the presence and absence of the acceptor, would be distinct due to FRET at the single-molecule level. To test this hypothesis, we used wavelength-dependent FCS to quantify the molecular brightness of intact and enzymatically cleaved GE2.3 as a function of Ficoll-70 (a crowding agent, 0-300 g L-1) at room temperature. Our results indicate that the molecular brightness of intact GE2.3 in a buffer is smaller than that of the cleaved counterpart under 488-nm excitation of the donor, which is attributed to FRET. In contrast, the molecular brightness of both cleaved and intact GE2.3 seems to be the same under the 561-nm excitation of the acceptor due to the absence of FRET. Our results also show that the FRET efficiency of GE2.3 increases as the concentration of Ficoll increases up to 200 g L-1, which agrees with our previous time-resolved 2P-fluorescence measurements. Fluctuation autocorrelation analysis shows that the translational diffusion of intact and cleaved GE2.3 sensors deviates from the Stokes-Einstein model in Ficoll crowded solutions. Additionally, we highlight the multiscale translational and rotational diffusion coefficients of GE2.3 in terms of the average distance between neighboring Ficoll molecules, over the same concentration range, to elucidate the spatio-temporal scaling aspect of FRET and protein-protein interactions. These single-molecule studies would be beneficial for future studies in living cells, where very low GE2.3 expression levels will be required as compared with ensemble, time-resolved 2P-fluorescence measurements.
Collapse
Affiliation(s)
- Sarah A Mersch
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Clint McCue
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Alexandros Aristidou
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| |
Collapse
|
3
|
Das N, Khan T, Halder B, Ghosh S, Sen P. Macromolecular crowding effects on protein dynamics. Int J Biol Macromol 2024; 281:136248. [PMID: 39374718 DOI: 10.1016/j.ijbiomac.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties. One of the essential characteristics of protein is its dynamic nature; however, how protein dynamics get modulated in the crowded milieu has been largely ignored. This article discusses how protein translational, rotational, conformational, and solvation dynamics change under crowded conditions, summarizing key observations in the literature. We emphasize our research on microsecond conformational and water dynamics in crowded milieus and their impact on enzymatic activity and stability. Lastly, we provided our outlook on how this field might move forward in the future.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
4
|
Jabbour R, Raran-Kurussi S, Agarwal V, Equbal A. Tailoring solid-state DNP methods to the study of α-synuclein LLPS. Biophys Chem 2024; 313:107303. [PMID: 39126968 DOI: 10.1016/j.bpc.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Dynamic Nuclear Polarization (DNP) is a technique that leverages the quantum sensing capability of electron spins to enhance the sensitivity of nuclear magnetic resonance (NMR) signals, especially for insensitive samples. Glassing agents play a crucial role in the DNP process by facilitating the transfer of polarization from the unpaired electron spins to the nuclear spins along with cryoprotection of biomolecules. DNPjuice comprising of glycerol-d8/D2O/H2O has been extensively used for this purpose over the past two decades. Polyethylene glycol (PEG), also used as a cryoprotectant, is often used as a crowding agent in experimental setups to mimic cellular conditions, particularly the invitro preparation of liquid-liquid phase separated (LLPS) condensates. In this study, we investigate the efficacy of PEG as an alternative to glycerol in the DNP juice, critical for signal enhancement. The modified DNP matrix leads to high DNP enhancement which enables direct study of LLPS condensates by solid-state DNP methods without adding any external constituents. An indirect advantage of employing PEG is that the PEG signals appear at ∼72.5 ppm and are relatively well-separated from the aliphatic region of the protein spectra. Large cross-effect DNP enhancement is attained for 13C-glycine by employing the PEG-water mixture as a glassing agent and ASYMPOL-POK as the state-of-art polarizing agent, without any deuteration. The DNP enhancement and the buildup rates are similar to results obtained with DNP juice, conforming to that PEG serves as a good candidate for both inducing crowding and glassing agent in the study of LLPS.
Collapse
Affiliation(s)
- Ribal Jabbour
- Center for Quantum and Topological Systems, New York University Abu Dhabi, United Arab Emirates; Department of Chemistry, New York University Abu Dhabi, United Arab Emirates
| | | | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, Telangana, India.
| | - Asif Equbal
- Center for Quantum and Topological Systems, New York University Abu Dhabi, United Arab Emirates; Department of Chemistry, New York University Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Khan T, Halder B, Das N, Sen P. Role of Associated Water Dynamics on Protein Stability and Activity in Crowded Milieu. J Phys Chem B 2024; 128:8672-8686. [PMID: 39224956 DOI: 10.1021/acs.jpcb.4c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Macromolecular crowding bridges in vivo and in vitro studies by simulating cellular complexities such as high viscosity and limited space while maintaining the experimental feasibility. Over the last two decades, the impact of macromolecular crowding on protein stability and activity has been a significant topic of study and discussion, though still lacking a thorough mechanistic understanding. This article investigates the role of associated water dynamics on protein stability and activity within crowded environments, using bromelain and Ficoll-70 as the model systems. Traditional crowding theory primarily attributes protein stability to entropic effects (excluded volume) and enthalpic interactions. However, our recent findings suggest that water structure modulation plays a crucial role in a crowded environment. In this report, we strengthen the conclusion of our previous study, i.e., rigid-associated water stabilizes proteins via entropy and destabilizes them via enthalpy, while flexible water has the opposite effect. In the process, we addressed previous shortcomings with a systematic concentration-dependent study using a single-domain protein and component analysis of solvation dynamics. More importantly, we analyze bromelain's hydrolytic activity using the Michaelis-Menten model to understand kinetic parameters like maximum velocity (Vmax) achieved by the system and the Michaelis-Menten coefficient (KM). Results indicate that microviscosity (not the bulk viscosity) controls the enzyme-substrate (ES) complex formation, where an increase in the microviscosity makes the ES complex formation less favorable. On the other hand, flexible associated water dynamics were found to favor the rate of product formation significantly from the ES complex, while rigid associated water hinders it. This study improves our understanding of protein stability and activity in crowded environments, highlighting the critical role of associated water dynamics.
Collapse
Affiliation(s)
- Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| |
Collapse
|
6
|
Shin J, Saha B, Chung H, Jang Y. Architecting Multicompartmentalized, Giant Vesicles with Recombinant Fusion Proteins. Biomacromolecules 2024; 25:6127-6134. [PMID: 39105695 DOI: 10.1021/acs.biomac.4c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We present a straightforward strategy for constructing giant, multicompartmentalized vesicles using recombinant fusion proteins. Our method leverages the self-assembly of globule-zipper-elastin-like polypeptide fusion protein complexes in aqueous conditions, eliminating the need for organic solvents and chemical conjugation. By employing the thin-film rehydration method, we have successfully encapsulated a diverse range of bioactive macromolecules and engineered organelle-like compartments─ranging from soluble proteins and coacervate droplets to vesicles─within these protein-assembled giant vesicles. This approach also facilitates the integration of water-soluble block copolymers, enhancing the structural stability and functional versatility of the vesicles. Our results suggest that these multicompartment giant protein vesicles not only mimic the complex architecture of living cells but also support biochemically distinct reactions regulated by functionally folded proteins, providing a robust model for studying cellular processes and designing microreactor systems. This work highlights the transformative potential of self-assembling recombinant fusion proteins in artificial cell design.
Collapse
Affiliation(s)
- Jooyong Shin
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| | - Biswajit Saha
- Department of Chemical and Biomedical Engineering, FAMU-FSU, Tallahassee, Florida 32310, United States
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU, Tallahassee, Florida 32310, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Singh A, Gupta M, Rastogi H, Khare K, Chowdhury PK. Deeper Insights into Mixed Crowding through Enzyme Activity, Dynamics, and Crowder Diffusion. J Phys Chem B 2024; 128:5293-5309. [PMID: 38808573 DOI: 10.1021/acs.jpcb.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Given the fact that the cellular interior is crowded by many different kinds of macromolecules, it is important that in vitro studies be carried out in the presence of mixed crowder systems. In this regard, we have used binary crowders formed by the combination of some of the commonly used crowding agents, namely, Ficoll 70, Dextran 70, Dextran 40, and PEG 8000 (PEG 8), to study how these affect enzyme activity, dynamics, and crowder diffusion. The enzyme chosen is AK3L1, an isoform of adenylate kinase. To investigate its dynamics, we have carried out three single point mutations (A74C, A132C, and A209C) with the cysteine residues being labeled with a coumarin-based solvatochromic probe [CPM: (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin)]. Both enzyme activity and dynamics decreased in the binary mixtures as compared with the sum of the individual crowders, suggesting a reduction in excluded volume (in the mixture). To gain deeper insights into the binary mixtures, fluorescence correlation spectroscopy studies were carried out using fluorescein isothiocyanate-labeled Dextran 70 and tetramethylrhodamine-labeled AK3L1 as the diffusion probes. Diffusion in binary mixtures was observed to be much more constrained (relative to the sum of the individual crowders) for the labeled enzyme as compared to the labeled crowder showing different environments being faced by the two species. This was further confirmed during imaging of the phase-separated droplets formed in the binary mixtures having PEG as one of the crowding agents. The interior of these droplets was found to be rich in crowders and densely packed, as shown by confocal and digital holographic microscopy images, with the enzymes predominantly residing outside these droplets, that is, in the relatively less crowded regions. Taken together, our data provide important insights into various aspects of the simplest form of mixed crowding, that is, composed of just two components, and also hint at the enhanced complexity that the cellular interior presents toward having a detailed and comprehensive understanding of the same.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kedar Khare
- Optics and Photonics Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Raczyłło E, Gołowicz D, Skóra T, Kazimierczuk K, Kondrat S. Size Sensitivity of Metabolite Diffusion in Macromolecular Crowds. NANO LETTERS 2024; 24. [PMID: 38607288 PMCID: PMC11057039 DOI: 10.1021/acs.nanolett.3c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Metabolites play crucial roles in cellular processes, yet their diffusion in the densely packed interiors of cells remains poorly understood, compounded by conflicting reports in existing studies. Here, we employ pulsed-gradient stimulated-echo NMR and Brownian/Stokesian dynamics simulations to elucidate the behavior of nano- and subnanometer-sized tracers in crowded environments. Using Ficoll as a crowder, we observe a linear decrease in tracer diffusivity with increasing occupied volume fraction, persisting─somewhat surprisingly─up to volume fractions of 30-40%. While simulations suggest a linear correlation between diffusivity slowdown and particle size, experimental findings hint at a more intricate relationship, possibly influenced by Ficoll's porosity. Simulations and numerical calculations of tracer diffusivity in the E. coli cytoplasm show a nonlinear yet monotonic diffusion slowdown with particle size. We discuss our results in the context of nanoviscosity and discrepancies with existing studies.
Collapse
Affiliation(s)
- Edyta Raczyłło
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Department
of Theoretical Chemistry, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Skłodowska
University in Lublin, 20-031 Lublin, Poland
| | - Dariusz Gołowicz
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Tomasz Skóra
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Scientific
Computing and Imaging Institute, University
of Utah, Salt Lake City, Utah 84112, United States
| | | | - Svyatoslav Kondrat
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute
for Computational Physics, University of
Stuttgart 70569, Stuttgart, Germany
| |
Collapse
|
9
|
Sutormin OS, Nemtseva EV, Gulnov DV, Sukovatyi LA, Tyrtyshnaya YS, Lisitsa AE, Kratasyuk VA. Coupling of NAD(P)H:FMN-oxidoreductase and luciferase from luminous bacteria in a viscous medium: Finding the weakest link in the chain. Photochem Photobiol 2024; 100:465-476. [PMID: 37583116 DOI: 10.1111/php.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
The study aims at revealing the mechanisms of the viscous medium effects on the kinetic features of NAD(P)H:FMN-oxidoreductase from luminous bacteria (Red), which are exhibited in a single enzyme assay and in coupling with bacterial luciferase (BLuc). Different concentrations of glycerol and sucrose were used to vary the medium viscosity. The activity of Red, alone and in the presence of BLuc, was analyzed, as well as BLuc activity in the presence of Red, whereas in the absence of BLuc, the Red activity was suppressed in viscous medium, and in the presence of BLuc, the increase in Red activity was observed at low glycerol concentrations (5-20 wt%). The interaction of glycerol and sucrose with Red substrates FMN and NADH was studied using absorption spectroscopy and molecular dynamics. Glycerol was found to form hydrogen bonds with the phosphate groups of the substrates, unlike sucrose. A mechanism for the activation of Red in the presence of BLuc in glycerol solutions through the acceleration of FMN reoxidation was proposed. Thus, it was concluded that, under the conditions used, the weakest link of the coupled enzyme system BLuc-Red in viscous medium is the FMN concentration, which depends on Red activity and the medium viscosity.
Collapse
Affiliation(s)
- Oleg S Sutormin
- Department of Chemistry, Institute of Natural and Technical Sciences, Surgut State University, Surgut, Russia
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Elena V Nemtseva
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Dmitry V Gulnov
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Lev A Sukovatyi
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Yekaterina S Tyrtyshnaya
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Albert E Lisitsa
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Valentina A Kratasyuk
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Krasnoyarsk, Russia
| |
Collapse
|
10
|
Seitz C, Deveci İ, McCammon JA. Glycosylation and Crowded Membrane Effects on Influenza Neuraminidase Stability and Dynamics. J Phys Chem Lett 2023; 14:9926-9934. [PMID: 37903229 PMCID: PMC10641874 DOI: 10.1021/acs.jpclett.3c02524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023]
Abstract
All protein simulations are conducted with varying degrees of simplification, oftentimes with unknown ramifications about how these simplifications affect the interpretability of the results. In this work, we investigated how protein glycosylation and lateral crowding effects modulate an array of properties characterizing the stability and dynamics of influenza neuraminidase. We constructed three systems: (1) glycosylated neuraminidase in a whole virion (i.e., crowded membrane) environment, (2) glycosylated neuraminidase in its own lipid bilayer, and (3) unglycosylated neuraminidase in its own lipid bilayer. We saw that glycans tend to stabilize the protein structure and reduce its conformational flexibility while restricting the solvent movement. Conversely, a crowded membrane environment encouraged exploration of the free energy landscape and a large-scale conformational change, while making the protein structure more compact. Understanding these effects informs what factors one must consider in attempting to recapture the desired level of physical accuracy.
Collapse
Affiliation(s)
- Christian Seitz
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - İlker Deveci
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - J. Andrew McCammon
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Seitz C, Deveci İ, McCammon JA. Glycosylation and Crowded Membrane Effects on Influenza Neuraminidase Stability and Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.556910. [PMID: 37745347 PMCID: PMC10515755 DOI: 10.1101/2023.09.10.556910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
All protein simulations are conducted with varying degrees of simplifications, oftentimes with unknown ramifications on how these simplifications affect the interpretability of the results. In this work we investigated how protein glycosylation and lateral crowding effects modulate an array of properties characterizing the stability and dynamics of influenza neuraminidase. We constructed three systems: 1) Glycosylated neuraminidase in a whole virion (i.e. crowded membrane) environment 2) Glycosylated neuraminidase in its own lipid bilayer 3) Unglycosylated neuraminidase in its own lipid bilayer. We saw that glycans tend to stabilize the protein structure and reduce its conformational flexibility while restricting solvent movement. Conversely, a crowded membrane environment encouraged exploration of the free energy landscape and a large scale conformational change while making the protein structure more compact. Understanding these effects informs what factors one must consider while attempting to recapture the desired level of physical accuracy.
Collapse
Affiliation(s)
- Christian Seitz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - İlker Deveci
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| |
Collapse
|
12
|
Słyk E, Skóra T, Kondrat S. Minimal Coarse-Grained Model for Immunoglobulin G: Diffusion and Binding under Crowding. J Phys Chem B 2023; 127:7442-7448. [PMID: 37591305 PMCID: PMC10476189 DOI: 10.1021/acs.jpcb.3c02383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Immunoglobulin G (IgG) is the most common type of antibody found in blood and extracellular fluids and plays an essential role in our immune response. However, studies of the dynamics and reaction kinetics of IgG-antigen binding under physiological crowding conditions are scarce. Herein, we develop a coarse-grained model of IgG consisting of only six beads that we find minimal for a coarse representation of IgG's shape and a decent reproduction of its flexibility and diffusion properties measured experimentally. Using this model in Brownian dynamics simulations, we find that macromolecular crowding affects only slightly the IgG's flexibility, as described by the distribution of angles between the IgG's arms and stem. Our simulations indicate that, contrary to expectations, crowders slow down the translational diffusion of an IgG less strongly than they do for a smaller Ficoll 70, which we relate to the IgG's conformational size changes induced by crowding. We also find that crowders affect the binding kinetics by decreasing the rate of the first binding step and enhancing the second binding step.
Collapse
Affiliation(s)
- Edyta Słyk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Warsaw 01-224, Poland
- Department
of Theoretical Chemistry, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Skłodowska
University in Lublin, Lublin 20-031, Poland
| | - Tomasz Skóra
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Warsaw 01-224, Poland
| | - Svyatoslav Kondrat
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Warsaw 01-224, Poland
- Institute
for Computational Physics, University of
Stuttgart, Stuttgart 70569, Germany
| |
Collapse
|
13
|
Kusova AM, Rakipov IT, Zuev YF. Effects of Homogeneous and Heterogeneous Crowding on Translational Diffusion of Rigid Bovine Serum Albumin and Disordered Alfa-Casein. Int J Mol Sci 2023; 24:11148. [PMID: 37446325 DOI: 10.3390/ijms241311148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Intracellular environment includes proteins, sugars, and nucleic acids interacting in restricted media. In the cytoplasm, the excluded volume effect takes up to 40% of the volume available for occupation by macromolecules. In this work, we tested several approaches modeling crowded solutions for protein diffusion. We experimentally showed how the protein diffusion deviates from conventional Brownian motion in artificial conditions modeling the alteration of medium viscosity and rigid spatial obstacles. The studied tracer proteins were globular bovine serum albumin and intrinsically disordered α-casein. Using the pulsed field gradient NMR, we investigated the translational diffusion of protein probes of different structures in homogeneous (glycerol) and heterogeneous (PEG 300/PEG 6000/PEG 40,000) solutions as a function of crowder concentration. Our results showed fundamentally different effects of homogeneous and heterogeneous crowded environments on protein self-diffusion. In addition, the applied "tracer on lattice" model showed that smaller crowding obstacles (PEG 300 and PEG 6000) create a dense net of restrictions noticeably hindering diffusing protein probes, whereas the large-sized PEG 40,000 creates a "less restricted" environment for the diffusive motion of protein molecules.
Collapse
Affiliation(s)
- Aleksandra M Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia
| | - Ilnaz T Rakipov
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| |
Collapse
|
14
|
Skóra T, Janssen M, Carlson A, Kondrat S. Crowding-Regulated Binding of Divalent Biomolecules. PHYSICAL REVIEW LETTERS 2023; 130:258401. [PMID: 37418731 DOI: 10.1103/physrevlett.130.258401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/08/2023] [Indexed: 07/09/2023]
Abstract
Macromolecular crowding affects biophysical processes as diverse as diffusion, gene expression, cell growth, and senescence. Yet, there is no comprehensive understanding of how crowding affects reactions, particularly multivalent binding. Herein, we use scaled particle theory and develop a molecular simulation method to investigate the binding of monovalent to divalent biomolecules. We find that crowding can increase or reduce cooperativity-the extent to which the binding of a second molecule is enhanced after binding a first molecule-by orders of magnitude, depending on the sizes of the involved molecular complexes. Cooperativity generally increases when a divalent molecule swells and then shrinks upon binding two ligands. Our calculations also reveal that, in some cases, crowding enables binding that does not occur otherwise. As an immunological example, we consider immunoglobulin G-antigen binding and show that crowding enhances its cooperativity in bulk but reduces it when an immunoglobulin G binds antigens on a surface.
Collapse
Affiliation(s)
- Tomasz Skóra
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Mathijs Janssen
- Department of Mathematics, Mechanics Division, University of Oslo, N-0851 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
- Norwegian University of Life Sciences, Faculty of Science and Technology, Pb 5003, 1433 Ås, Norway
| | - Andreas Carlson
- Department of Mathematics, Mechanics Division, University of Oslo, N-0851 Oslo, Norway
| | - Svyatoslav Kondrat
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute for Computational Physics, University of Stuttgart, Stuttgart 70569, Germany
| |
Collapse
|
15
|
Bulthuis EP, Dieteren CEJ, Bergmans J, Berkhout J, Wagenaars JA, van de Westerlo EMA, Podhumljak E, Hink MA, Hesp LFB, Rosa HS, Malik AN, Lindert MKT, Willems PHGM, Gardeniers HJGE, den Otter WK, Adjobo-Hermans MJW, Koopman WJH. Stress-dependent macromolecular crowding in the mitochondrial matrix. EMBO J 2023; 42:e108533. [PMID: 36825437 PMCID: PMC10068333 DOI: 10.15252/embj.2021108533] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
Macromolecules of various sizes induce crowding of the cellular environment. This crowding impacts on biochemical reactions by increasing solvent viscosity, decreasing the water-accessible volume and altering protein shape, function, and interactions. Although mitochondria represent highly protein-rich organelles, most of these proteins are somehow immobilized. Therefore, whether the mitochondrial matrix solvent exhibits macromolecular crowding is still unclear. Here, we demonstrate that fluorescent protein fusion peptides (AcGFP1 concatemers) in the mitochondrial matrix of HeLa cells display an elongated molecular structure and that their diffusion constant decreases with increasing molecular weight in a manner typical of macromolecular crowding. Chloramphenicol (CAP) treatment impaired mitochondrial function and reduced the number of cristae without triggering mitochondrial orthodox-to-condensed transition or a mitochondrial unfolded protein response. CAP-treated cells displayed progressive concatemer immobilization with increasing molecular weight and an eightfold matrix viscosity increase, compatible with increased macromolecular crowding. These results establish that the matrix solvent exhibits macromolecular crowding in functional and dysfunctional mitochondria. Therefore, changes in matrix crowding likely affect matrix biochemical reactions in a manner depending on the molecular weight of the involved crowders and reactants.
Collapse
Affiliation(s)
- Elianne P Bulthuis
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Cindy E J Dieteren
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands.,Department of Cell Biology and Electron Microscopy Center, Radboudumc, Nijmegen, The Netherlands
| | - Jesper Bergmans
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Job Berkhout
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Jori A Wagenaars
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Els M A van de Westerlo
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Emina Podhumljak
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Mark A Hink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura F B Hesp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Hannah S Rosa
- Department of Diabetes, King's College London, London, UK
| | - Afshan N Malik
- Department of Diabetes, King's College London, London, UK
| | - Mariska Kea-Te Lindert
- Department of Cell Biology and Electron Microscopy Center, Radboudumc, Nijmegen, The Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Han J G E Gardeniers
- Mesoscale Chemical Systems, University of Twente, Enschede, The Netherlands.,MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Wouter K den Otter
- MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.,Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
16
|
Quinn SD, Dresser L, Graham S, Conteduca D, Shepherd J, Leake MC. Crowding-induced morphological changes in synthetic lipid vesicles determined using smFRET. Front Bioeng Biotechnol 2022; 10:958026. [PMID: 36394015 PMCID: PMC9650091 DOI: 10.3389/fbioe.2022.958026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Lipid vesicles are valuable mesoscale molecular confinement vessels for studying membrane mechanics and lipid-protein interactions, and they have found utility among bio-inspired technologies, including drug delivery vehicles. While vesicle morphology can be modified by changing the lipid composition and introducing fusion or pore-forming proteins and detergents, the influence of extramembrane crowding on vesicle morphology has remained under-explored owing to a lack of experimental tools capable of capturing morphological changes on the nanoscale. Here, we use biocompatible polymers to simulate molecular crowding in vitro, and through combinations of FRET spectroscopy, lifetime analysis, dynamic light scattering, and single-vesicle imaging, we characterize how crowding regulates vesicle morphology. We show that both freely diffusing and surface-tethered vesicles fluorescently tagged with the DiI and DiD FRET pair undergo compaction in response to modest concentrations of sorbitol, polyethylene glycol, and Ficoll. A striking observation is that sorbitol results in irreversible compaction, whereas the influence of high molecular weight PEG-based crowders was found to be reversible. Regulation of molecular crowding allows for precise control of the vesicle architecture in vitro, with vast implications for drug delivery and vesicle trafficking systems. Furthermore, our observations of vesicle compaction may also serve to act as a mechanosensitive readout of extramembrane crowding.
Collapse
Affiliation(s)
- Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Lara Dresser
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Sarah Graham
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Donato Conteduca
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Jack Shepherd
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Mark C. Leake
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
17
|
Crowding and confinement act in concert to slow DNA diffusion within cell-sized droplets. iScience 2022; 25:105122. [PMID: 36185357 PMCID: PMC9523355 DOI: 10.1016/j.isci.2022.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Dynamics of biological macromolecules, such as DNA, in crowded and confined environments are critical to understanding cellular processes such as transcription, infection, and replication. However, the combined effects of cellular confinement and crowding on macromolecular dynamics remain poorly understood. Here, we use differential dynamic microscopy to investigate the diffusion of large DNA molecules confined in cell-sized droplets and crowded by dextran polymers. We show that confined and crowded DNA molecules exhibit universal anomalous subdiffusion with scaling that is insensitive to the degree of confinement and crowding. However, effective DNA diffusion coefficients Deff decrease up to 2 orders of magnitude as droplet size decreases—an effect that is enhanced by increased crowding. We mathematically model the coupling of crowding and confinement by combining polymer scaling theories with confinement-induced depletion effects. The generality and tunability of our system and models render them applicable to elucidating wide-ranging crowded and confined systems. DNA diffusion measured in cell-sized droplets with differential dynamic microscopy Combination of crowding and confinement leads to subdiffusion and slowing Diffusion coefficients of DNA decrease strongly with decreasing droplet size Polymer scaling theories and depletion effects predict observed dynamics
Collapse
|
18
|
Joshi A, Kishore N. Macromolecular crowding and preferential exclusion counteract the effect of protein denaturant: Biophysical aspects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Słyk E, Skóra T, Kondrat S. How macromolecules softness affects diffusion under crowding. SOFT MATTER 2022; 18:5366-5370. [PMID: 35833511 DOI: 10.1039/d2sm00357k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diffusion in a macromolecularly crowded environment is essential for many intracellular processes, from metabolism and catalysis to gene transcription and translation. So far, theoretical and experimental work has focused on anomalous subdiffusion, and the effects of interactions, shapes, and composition, while the compactness or softness of macromolecules has received less attention. Herein, we use Brownian dynamics simulations to study how the softness of crowders affects macromolecular diffusion. We find that in most cases, soft crowders slow down the diffusion less effectively than hard crowders like Ficoll. For instance, at a 30% occupied volume fraction, the diffusion in Ficoll70 is about 20% slower than in soft crowders of the same size. However, our simulations indicate that elongated macromolecules, such as double-stranded DNA pieces, can diffuse comparably or even faster in hard crowders. We relate these effects to the volume excluded by soft and hard crowders to different tracers. Our results show that the softness and shape of macromolecules are crucial factors determining diffusion under crowding, relevant to diverse intracellular environments.
Collapse
Affiliation(s)
- Edyta Słyk
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Skóra
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | - Svyatoslav Kondrat
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| |
Collapse
|
20
|
Li C, Zhang X, Dong M, Han X. Progress on Crowding Effect in Cell-like Structures. MEMBRANES 2022; 12:593. [PMID: 35736300 PMCID: PMC9228500 DOI: 10.3390/membranes12060593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022]
Abstract
Several biological macromolecules, such as proteins, nucleic acids, and polysaccharides, occupy about 30% of the space in cells, resulting in a crowded macromolecule environment. The crowding effect within cells exerts an impact on the functions of biological components, the assembly behavior of biomacromolecules, and the thermodynamics and kinetics of metabolic reactions. Cell-like structures provide confined and independent compartments for studying the working mechanisms of cells, which can be used to study the physiological functions arising from the crowding effect of macromolecules in cells. This article mainly summarizes the progress of research on the macromolecular crowding effects in cell-like structures. It includes the effects of this crowding on actin assembly behavior, tubulin aggregation behavior, and gene expression. The challenges and future trends in this field are presented at the end of the paper.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| |
Collapse
|
21
|
Hazra R, Roy D. Monosaccharide induced temporal delay in cholesterol self-aggregation. J Biomol Struct Dyn 2022; 41:3205-3217. [PMID: 35254222 DOI: 10.1080/07391102.2022.2048076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Self-assembly of cholesterol (CHL) is infamous for its diverse deleterious effects on human health. Clinical research over several decades indicates that a diet rich in CHL typically leads to arterial plaques, cataracts and gall stones among others. Carbohydrates like the β-glucans efficiently lower serum CHL, possibly by inhibiting CHL absorption in the digestive tract. Using molecular dynamics simulations, we explore how β-D-glucose (BGLC), the building block of β-glucans, interferes with CHL aggregation. BGLC slows down CHL diffusion and disrupts the formation of the robust hydrophobic CHL assembly. Estimation of the translational entropy of the CHL molecules shows the extent of retardation induced by BGLC. Coordination numbers obtained from the adjacency matrix and collective variable analysis of the packing of the CHL molecules in presence of BGLC show the time evolution of CHL aggregation. In presence of BGLC, small isolated CHL islands form, consolidate and disintegrate over time as compared to the blank CHL system. The predominance of smaller CHL clusters is an effect of the significant retardation of the translational motion of CHL molecules induced by BGLC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rituparna Hazra
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
22
|
Gupta M, Chowdhury PK. Protein dynamics as a sensor for macromolecular crowding: Insights into mixed crowding. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
González-Paz L, Hurtado-León ML, Lossada C, Fernández-Materán FV, Vera-Villalobos J, Loroño M, Paz JL, Jeffreys L, Alvarado YJ. Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach. Biophys Chem 2021; 278:106677. [PMID: 34428682 PMCID: PMC8373590 DOI: 10.1016/j.bpc.2021.106677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/18/2023]
Abstract
The SARS-CoV-2 pandemic has accelerated the study of existing drugs. The mixture of homologs called ivermectin (avermectin-B1a [HB1a] + avermectin-B1b [HB1b]) has shown antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the behavior of each homolog. We investigated the interaction of each homolog with promising targets of interest associated with SARS-CoV-2 infection from a biophysical and computational-chemistry perspective using docking and molecular dynamics. We observed a differential behavior for each homolog, with an affinity of HB1b for viral structures, and of HB1a for host structures considered. The induced disturbances were differential and influenced by the hydrophobicity of each homolog and of the binding pockets. We present the first comparative analysis of the potential theoretical inhibitory effect of both avermectins on biomolecules associated with COVID-19, and suggest that ivermectin through its homologs, has a multiobjective behavior.
Collapse
Affiliation(s)
- Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botánicos y Agroforestales (CEBA), Laboratorio de Protección Vegetal (LPV), 4001 Maracaibo, Venezuela.
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela
| | - Francelys V Fernández-Materán
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - J L Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Laura Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Ysaias J Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela.
| |
Collapse
|
24
|
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
25
|
Kim R, Radhakrishnan ML. Macromolecular crowding effects on electrostatic binding affinity: Fundamental insights from theoretical, idealized models. J Chem Phys 2021; 154:225101. [PMID: 34241219 DOI: 10.1063/5.0042082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The crowded cellular environment can affect biomolecular binding energetics, with specific effects depending on the properties of the binding partners and the local environment. Often, crowding effects on binding are studied on particular complexes, which provide system-specific insights but may not provide comprehensive trends or a generalized framework to better understand how crowding affects energetics involved in molecular recognition. Here, we use theoretical, idealized molecules whose physical properties can be systematically varied along with samplings of crowder placements to understand how electrostatic binding energetics are altered through crowding and how these effects depend on the charge distribution, shape, and size of the binding partners or crowders. We focus on electrostatic binding energetics using a continuum electrostatic framework to understand effects due to depletion of a polar, aqueous solvent in a crowded environment. We find that crowding effects can depend predictably on a system's charge distribution, with coupling between the crowder size and the geometry of the partners' binding interface in determining crowder effects. We also explore the effect of crowder charge on binding interactions as a function of the monopoles of the system components. Finally, we find that modeling crowding via a lowered solvent dielectric constant cannot account for certain electrostatic crowding effects due to the finite size, shape, or placement of system components. This study, which comprehensively examines solvent depletion effects due to crowding, complements work focusing on other crowding aspects to help build a holistic understanding of environmental impacts on molecular recognition.
Collapse
Affiliation(s)
- Rachel Kim
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, USA
| | | |
Collapse
|
26
|
Lai YC, Liu Z, Chen IA. Encapsulation of ribozymes inside model protocells leads to faster evolutionary adaptation. Proc Natl Acad Sci U S A 2021; 118:e2025054118. [PMID: 34001592 PMCID: PMC8166191 DOI: 10.1073/pnas.2025054118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Functional biomolecules, such as RNA, encapsulated inside a protocellular membrane are believed to have comprised a very early, critical stage in the evolution of life, since membrane vesicles allow selective permeability and create a unit of selection enabling cooperative phenotypes. The biophysical environment inside a protocell would differ fundamentally from bulk solution due to the microscopic confinement. However, the effect of the encapsulated environment on ribozyme evolution has not been previously studied experimentally. Here, we examine the effect of encapsulation inside model protocells on the self-aminoacylation activity of tens of thousands of RNA sequences using a high-throughput sequencing assay. We find that encapsulation of these ribozymes generally increases their activity, giving encapsulated sequences an advantage over nonencapsulated sequences in an amphiphile-rich environment. In addition, highly active ribozymes benefit disproportionately more from encapsulation. The asymmetry in fitness gain broadens the distribution of fitness in the system. Consistent with Fisher's fundamental theorem of natural selection, encapsulation therefore leads to faster adaptation when the RNAs are encapsulated inside a protocell during in vitro selection. Thus, protocells would not only provide a compartmentalization function but also promote activity and evolutionary adaptation during the origin of life.
Collapse
Affiliation(s)
- Yei-Chen Lai
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Ziwei Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| |
Collapse
|
27
|
Kobayashi R, Inaba H, Matsuura K. Fluorescence Correlation Spectroscopy Analysis of Effect of Molecular Crowding on Self-Assembly of β-Annulus Peptide into Artificial Viral Capsid. Int J Mol Sci 2021; 22:ijms22094754. [PMID: 33946174 PMCID: PMC8125178 DOI: 10.3390/ijms22094754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Recent progress in the de novo design of self-assembling peptides has enabled the construction of peptide-based viral capsids. Previously, we demonstrated that 24-mer β-annulus peptides from tomato bushy stunt virus spontaneously self-assemble into an artificial viral capsid. Here we propose to use the artificial viral capsid through the self-assembly of β-annulus peptide as a simple model to analyze the effect of molecular crowding environment on the formation process of viral capsid. Artificial viral capsids formed by co-assembly of fluorescent-labelled and unmodified β-annulus peptides in dilute aqueous solutions and under molecular crowding conditions were analyzed using fluorescence correlation spectroscopy (FCS). The apparent particle size and the dissociation constant (Kd) of the assemblies decreased with increasing concentration of the molecular crowding agent, i.e., polyethylene glycol (PEG). This is the first successful in situ analysis of self-assembling process of artificial viral capsid under molecular crowding conditions.
Collapse
Affiliation(s)
- Risako Kobayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (R.K.); (H.I.)
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (R.K.); (H.I.)
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (R.K.); (H.I.)
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
- Correspondence: ; Tel.: +81-857-31-5262
| |
Collapse
|
28
|
Kalra AP, Patel SD, Eakins BB, Riddell S, Kumar P, Winter P, Preto J, Carlson KW, Lewis JD, Rezania V, Tuszyński JA, Shankar K. Revealing and Attenuating the Electrostatic Properties of Tubulin and Its Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003560. [PMID: 33295102 DOI: 10.1002/smll.202003560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/17/2020] [Indexed: 06/12/2023]
Abstract
Tubulin is an electrostatically negative protein that forms cylindrical polymers termed microtubules, which are crucial for a variety of intracellular roles. Exploiting the electrostatic behavior of tubulin and microtubules within functional microfluidic and optoelectronic devices is limited due to the lack of understanding of tubulin behavior as a function of solvent composition. This work displays the tunability of tubulin surface charge using dimethyl sulfoxide (DMSO) for the first time. Increasing the DMSO volume fractions leads to the lowering of tubulin's negative surface charge, eventually causing it to become positive in solutions >80% DMSO. As determined by electrophoretic mobility measurements, this change in surface charge is directionally reversible, i.e., permitting control between -1.5 and + 0.2 cm2 (V s)-1 . When usually negative microtubules are exposed to these conditions, the positively charged tubulin forms tubulin sheets and aggregates, as revealed by an electrophoretic transport assay. Fluorescence-based experiments also indicate that tubulin sheets and aggregates colocalize with negatively charged g-C3 N4 sheets while microtubules do not, further verifying the presence of a positive surface charge. This study illustrates that tubulin and its polymers, in addition to being mechanically robust, are also electrically tunable.
Collapse
Affiliation(s)
- Aarat P Kalra
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2M9, Canada
| | - Sahil D Patel
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2M9, Canada
| | - Boden B Eakins
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2M9, Canada
| | - Saralyn Riddell
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta, T6G 2V4, Canada
| | - Pawan Kumar
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta, T6G 2V4, Canada
| | - Philip Winter
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Jordane Preto
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, 69008, France
| | - Kris W Carlson
- Department of Neurosurgery, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, 02215, USA
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta, T5J 4S2, Canada
| | - Jack A Tuszyński
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2M9, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta, T6G 2V4, Canada
| |
Collapse
|
29
|
Benítez-Mateos AI, Zeballos N, Comino N, Moreno de Redrojo L, Randelovic T, López-Gallego F. Microcompartmentalized Cell-Free Protein Synthesis in Hydrogel μ-Channels. ACS Synth Biol 2020; 9:2971-2978. [PMID: 33170665 DOI: 10.1021/acssynbio.0c00462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rapid demand for protein-based molecules has stimulated much research on cell-free protein synthesis (CFPS); however, there are still many challenges in terms of cost-efficiency, process intensification, and sustainability. Herein, we describe the microcompartmentalization of CFPS of superfolded green fluorescent protein (sGFP) in alginate hydrogels, which were casted into a μ-channel device. CFPS was optimized for the microcompartmentalized environment and characterized in terms of synthesis yield. To extend the scope of this technology, the use of other biocompatible materials (collagen, laponite, and agarose) was explored. In addition, the diffusion of sGFP from the hydrogel microenvironment to the bulk was demonstrated, opening a promising opportunity for concurrent synthesis and delivery of proteins. Finally, we provide an application for this system: the CFPS of enzymes. The present design of the hydrogel μ-channel device may enhance the potential application of microcompartmentalized CFPS in biosensing, bioprototyping, and therapeutic development.
Collapse
Affiliation(s)
- Ana I. Benítez-Mateos
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoll Zeballos
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
| | - Natalia Comino
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
| | - Lucía Moreno de Redrojo
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Teodora Randelovic
- Tissue MicroEnvironment (TME) Lab, Institute for Health Research Aragón (IISA), Avda. San Juan Bosco 13, 50009 Zaragoza, Spain
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, Mariano Escuillor s/n, 50018 Zaragoza, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- ARAID, Aragon Foundation for Science, 50009 Zaragoza, Spain
| |
Collapse
|
30
|
Vogel K, Greinert T, Reichard M, Held C, Harms H, Maskow T. Thermodynamics and Kinetics of Glycolytic Reactions. Part II: Influence of Cytosolic Conditions on Thermodynamic State Variables and Kinetic Parameters. Int J Mol Sci 2020; 21:ijms21217921. [PMID: 33113841 PMCID: PMC7663428 DOI: 10.3390/ijms21217921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 01/22/2023] Open
Abstract
For systems biology, it is important to describe the kinetic and thermodynamic properties of enzyme-catalyzed reactions and reaction cascades quantitatively under conditions prevailing in the cytoplasm. While in part I kinetic models based on irreversible thermodynamics were tested, here in part II, the influence of the presumably most important cytosolic factors was investigated using two glycolytic reactions (i.e., the phosphoglucose isomerase reaction (PGI) with a uni-uni-mechanism and the enolase reaction with an uni-bi-mechanism) as examples. Crowding by macromolecules was simulated using polyethylene glycol (PEG) and bovine serum albumin (BSA). The reactions were monitored calorimetrically and the equilibrium concentrations were evaluated using the equation of state ePC-SAFT. The pH and the crowding agents had the greatest influence on the reaction enthalpy change. Two kinetic models based on irreversible thermodynamics (i.e., single parameter flux-force and two-parameter Noor model) were applied to investigate the influence of cytosolic conditions. The flux-force model describes the influence of cytosolic conditions on reaction kinetics best. Concentrations of magnesium ions and crowding agents had the greatest influence, while temperature and pH-value had a medium influence on the kinetic parameters. With this contribution, we show that the interplay of thermodynamic modeling and calorimetric process monitoring allows a fast and reliable quantification of the influence of cytosolic conditions on kinetic and thermodynamic parameters.
Collapse
Affiliation(s)
- Kristina Vogel
- UFZ - Helmholtz Centre for Environmental Research, Department Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
- Institute for Drug Development, Leipzig University Medical School, Leipzig University, Bruederstr. 34, 04103 Leipzig, Germany
| | - Thorsten Greinert
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universitaet Dortmund, Emil-Figge-Str. 70, 44227 Dortmund, Germany;
| | - Monique Reichard
- UFZ - Helmholtz Centre for Environmental Research, Department Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
| | - Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universitaet Dortmund, Emil-Figge-Str. 70, 44227 Dortmund, Germany;
- Correspondence: (C.H.); (T.M.)
| | - Hauke Harms
- UFZ - Helmholtz Centre for Environmental Research, Department Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
| | - Thomas Maskow
- UFZ - Helmholtz Centre for Environmental Research, Department Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
- Correspondence: (C.H.); (T.M.)
| |
Collapse
|
31
|
Skóra T, Vaghefikia F, Fitter J, Kondrat S. Macromolecular Crowding: How Shape and Interactions Affect Diffusion. J Phys Chem B 2020; 124:7537-7543. [PMID: 32790396 DOI: 10.1021/acs.jpcb.0c04846] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A significant fraction of the cell volume is occupied by various proteins, polysaccharides, nucleic acids, etc., which considerably reduces the mobility of macromolecules. Theoretical and experimental work so far have mainly focused on the dependence of the mobility on the occupied volume, while the effect of a macromolecular shape received less attention. Herein, using fluorescence correlation spectroscopy (FCS) and Brownian dynamics (BD) simulations, we report on a dramatic slowdown of tracer diffusion by cylindrically shaped double-stranded (ds) DNAs (16 nm in length). We find, for instance, that the translational diffusion coefficient of a streptavidin tracer is reduced by about 60% for a volume fraction of dsDNA as low as just 5%. For comparison, for a spherical crowder (Ficoll70) the slowdown is only 10% at the same volume fraction and 60% reduction occurs at a volume fraction as high as 35%. BD simulations reveal that this reduction can be attributed to a larger volume excluded to a tracer by dsDNA particles, as compared with spherical Ficoll70 at the same volume fraction, and to the differences in the tracer-crowder attractive interactions. In addition, we find using BD simulations that rotational diffusion of dsDNA is less affected by the crowder shape than its translational motion. Our results show that diffusion in crowded systems is determined not merely by the occupied volume fraction, but that the shape and interactions can determine diffusion, which is relevant to the diverse intracellular environments inside living cells.
Collapse
Affiliation(s)
- Tomasz Skóra
- Department of Complex Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Farzaneh Vaghefikia
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany
| | - Jörg Fitter
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany.,Institut für Biologische Informationsprozesse (IBI-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Svyatoslav Kondrat
- Department of Complex Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany.,Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
32
|
Watanabe C, Kobori Y, Yamamoto J, Kinjo M, Yanagisawa M. Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion. J Phys Chem B 2020; 124:1090-1098. [PMID: 31939302 DOI: 10.1021/acs.jpcb.9b10558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.
Collapse
Affiliation(s)
- Chiho Watanabe
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan
| | - Yuta Kobori
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan.,Department of Applied Physics , Tokyo University of Agriculture and Technology , Naka-cho 2-24-16 , Koganei , Tokyo 184-8588 , Japan
| | - Johtaro Yamamoto
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Central 6, Higashi 1-1-1 , Tsukuba , Ibaraki 305-8568 , Japan
| | - Masataka Kinjo
- Faculty of Advanced Life Science , Hokkaido University , Kita-21 Nishi-11 Kita-ku , Sapporo , Hokkaido 001-0021 , Japan
| | - Miho Yanagisawa
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan.,Department of Basic Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan
| |
Collapse
|