1
|
Zhang C, Bu G, Meng L, Lu D, Tong S, Yao Z, Zheng D, Zhang L. Molecular Dynamics Insights into Water Transport Mechanisms in Polyamide Membranes: Influence of Cross-Linking Degree. J Phys Chem B 2025; 129:1697-1706. [PMID: 39871475 DOI: 10.1021/acs.jpcb.4c06566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Polyamide (PA) membranes are widely utilized in desalination and water treatment applications, yet the mechanisms underlying water transport within these amorphous polymer materials remain insufficiently understood. To gain more insight into these problems on a microscopic scale, we employ molecular dynamics (MD) simulations to analyze the relationship between the structural properties and the water permeation behavior of PA membranes. Two distinct atomistic models of PA membranes are developed by controlling their degrees of cross-linking (DC). We then conducted a comparative analysis on their microscopic structural properties and configurations of water inside the membranes and investigated how these differences lead to different water diffusion coefficients. Our results reveal that the membrane with a lower DC exhibits higher polymer mobility and a more orderly microscopic structure, allowing the formation of pores that can hold larger water clusters as well as more transient passages between pores, both contributing to an increased water diffusion coefficient. From these observations, we can conclude that water permeability within PA membranes is governed by both the morphology of semirigid pores and the oscillatory movements of the polymer chains. Overall, these findings contribute to a deeper understanding of the intricate mechanisms governing water permeation in PA membranes and may inform the design of more efficient membranes for reverse osmosis and other water treatment technologies.
Collapse
Affiliation(s)
- Chi Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guangle Bu
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| | - Lida Meng
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dan Lu
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| | - Sirui Tong
- College of Energy, Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zhikan Yao
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| | - Danjun Zheng
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Ecological Civilization Academy, Zhejiang University, Huzhou 313300, P. R. China
| |
Collapse
|
4
|
Chen Y, Li Y, Li Y, Guo J, Li S, Zhang S. Nano-Interlayers Fabricated via Interfacial Azo-Coupling Polymerization: Effect of Pore Properties of Interlayers on Overall Performance of Thin-Film Composite for Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59329-59340. [PMID: 34855350 DOI: 10.1021/acsami.1c19525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The supporting layer of nanofiltration membranes is critical to the overall nanofiltration performance. However, conventional supports lack efficient surface porosity, which leads to the limited utilization rate of the polyamide (PA) layer. Herein a double-skin-layer nanofiltration membrane with porous organic polymer nanointerlayers prepared via a two-step interfacial polymerization technique is presented to investigate the effect of the interlayers' pore properties on the performance of the thin-film composite. Nanometer interlayers with different pore sizes are fabricated via interfacial azo-coupling polymerization. The pore properties of the nanointerlayer extremely influence the permeance, where a suitable pore size of 4.22 nm promotes pure water permeance of up to 32.2 L m-2 h-1 bar-1, which is ∼3.8-fold greater than the membrane without an interlayer. However, an interlayer with 0.54 nm pores limits the performance (4.7 L m-2 h-1 bar-1), which is even lower than the unmodified membrane (7.5 L m-2 h-1 bar-1), because of the narrow pores and confined transport mode. However, the confined diffusion rate of amino monomers from the support to interface leads to a thinner PA layer of ∼45 nm and results in high flux. This work provides a facial route for the fabrication of interlayers and facilitate the design of high-performance membrane materials with interlayers.
Collapse
Affiliation(s)
- Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yonggang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yunqi Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jing Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Qin Y, Kang G, Cao Y. Finely tuned polyamide structure with green plasticizers to construct ultrafast water channels for effective desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147089. [PMID: 33901955 DOI: 10.1016/j.scitotenv.2021.147089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Highly permeable reverse osmosis (RO) membranes are desirable for alleviating the energy burden and ensuring future water sustainability. Herein, the effectiveness of green plasticizer-assisted interfacial polymerization (GPAIP) for preparing polyamide thin-film composite (TFC) RO membranes with significantly enhanced water permeability was demonstrated. The presence of green citrate plasticizers, namely tributyl citrate (TBC) or acetyl tributyl citrate (ATBC), led to the formation of new hydrogen bonds and inhibited the formation of the initial interchain amide-amide bonding, thus markedly reducing chain rigidity as demonstrated by the decreased elasticity modulus. More flexible polyamide chains resulted in the creation of more ultrafast water channels during filtration. Furthermore, TBC-modified membranes exhibited more elastic polyamide layers and higher water flux than that of ATBC-modified membranes on account of the presence of both hydrogen bond acceptors (OH) and hydrogen bond donors (C=O) in TBC molecules. Specifically, water flux of 0.6 wt% TBC-modified and 0.6 wt% ATBC-modified membranes was 83.6 L m-2 h-1 and 49.7 L m-2 h-1 respectively, more than 5 times and 3 times that of the pristine membrane. The excellent performance of TFC RO membranes fabricated via GPAIP together with the facile membrane manufacturing process offered the possibility of breaking the predicament in desalination field, which could eventually help ease the current freshwater crisis.
Collapse
Affiliation(s)
- Yitian Qin
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Kang
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yiming Cao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
6
|
Zhang W, Qin Y, Shi W, Hu Y. Unveiling the Molecular Mechanisms of Thickness-Dependent Water Dynamics in an Ultrathin Free-Standing Polyamide Membrane. J Phys Chem B 2020; 124:11939-11948. [PMID: 33332121 DOI: 10.1021/acs.jpcb.0c07263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aromatic polyamide (PA) membranes fabricated from interfacial polymerization are widely used for desalination and water treatment. The fabrication of the high-flux PA membrane requires a fundamental understanding of the molecular mechanisms of water dynamics in the PA, which is still obscure due to the limited experimental methods. Herein, molecular dynamics (MD) simulations were employed to establish an atomic model of ultrathin free-standing PA membranes with various thickness and to explore the thickness-dependent dynamics of water molecules in the PA membrane. Simulation results illustrate that the simulated PA membrane has an average pore radius of 3 Å similar to the free volume size of the experimental PA membrane measured by PALS. The PA could be identified as the swelling layer (SL) and the confined layer (CL) based on their water diffusion rates. The diffusivity of water in the confined layer of PA membrane was much lower than that in the swelling layer and thus determined the water flux of the PA membrane. The water diffusivity in the sub-8 nm PA membrane is greatly enhanced due to a very thin confined layer thickness, illustrating the mechanism of the experimentally fabricated sub-8 nm PA membrane having the dramatically enhanced water permeability. Furthermore, results show that water molecules tend to transport rapidly in the free space inside the PA membrane. Our results provide some insights into the thickness-dependent water dynamics in the PA on a molecular level and may help to design the next generation of high-flux PA membranes.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China.,School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yiwen Qin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China.,School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Wenxiong Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China.,School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China.,School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
7
|
Jahan Sajib MS, Wei Y, Mishra A, Zhang L, Nomura KI, Kalia RK, Vashishta P, Nakano A, Murad S, Wei T. Atomistic Simulations of Biofouling and Molecular Transfer of a Cross-linked Aromatic Polyamide Membrane for Desalination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7658-7668. [PMID: 32460500 DOI: 10.1021/acs.langmuir.0c01308] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reverse osmosis through a polyamide (PA) membrane is an important technique for water desalination and purification. In this study, molecular dynamics simulations were performed to study the biofouling mechanism (i.e., protein adsorption) and nonequilibrium steady-state water transfer of a cross-linked PA membrane. Our results demonstrated that the PA membrane surface's roughness is a key factor of surface's biofouling, as the lysozyme protein adsorbed on the surface's cavity site displays extremely low surface diffusivity, blocking water passage, and decreasing water flux. The adsorbed protein undergoes secondary structural changes, particularly in the pressure-driven flowing conditions, leading to strong protein-surface interactions. Our simulations were able to present water permeation close to the experimental conditions with a pressure difference as low as 5 MPa, while all the electrolytes, which are tightly surrounded by hydration water, were effectively rejected at the membrane surfaces. The analysis of the self-intermediate scattering function demonstrates that the dynamics of water molecules coordinated with hydrogen bonds is faster inside the pores than during the translation across the pores. The pressure difference applied shows a negligible effect on the water structure and content inside the membrane but facilitates the transportation of hydrogen-bonded water molecules through the membrane's sub-nanopores with a reduced coordination number. The linear relationship between the water flux and the pressure difference demonstrates the applicability of continuum hydrodynamic principles and thus the stability of the membrane structure.
Collapse
Affiliation(s)
- Md Symon Jahan Sajib
- Chemical Engineering Department, Howard University, 2366 Sixth Street NW, Washington, District of Columbia 20059, United States
| | - Ying Wei
- School of Information Science and Technology, Xiamen University, Tan Kah Kee College, 422 Siming South Road, Zhangzhou, Fujian 363105, China
| | - Ankit Mishra
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90007, United States
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, 38 Zhe Da Road, Hangzhou 310027, China
| | - Ken-Ichi Nomura
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90007, United States
- Collaboratory for Advanced Computing and Simulations, University of Southern California, 3651 Watt Way, VHE 608, Los Angeles, California 90089, United States
| | - Rajiv K Kalia
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90007, United States
- Collaboratory for Advanced Computing and Simulations, University of Southern California, 3651 Watt Way, VHE 608, Los Angeles, California 90089, United States
- Department of Physics & Astronomy, University of Southern California, 825 Bloom Walk, ACB 439, Los Angeles, California 90089, United States
- Department of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, California 90089, United States
| | - Priya Vashishta
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90007, United States
- Collaboratory for Advanced Computing and Simulations, University of Southern California, 3651 Watt Way, VHE 608, Los Angeles, California 90089, United States
- Department of Physics & Astronomy, University of Southern California, 825 Bloom Walk, ACB 439, Los Angeles, California 90089, United States
- Department of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, California 90089, United States
| | - Aiichiro Nakano
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90007, United States
- Collaboratory for Advanced Computing and Simulations, University of Southern California, 3651 Watt Way, VHE 608, Los Angeles, California 90089, United States
- Department of Physics & Astronomy, University of Southern California, 825 Bloom Walk, ACB 439, Los Angeles, California 90089, United States
- Department of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, California 90089, United States
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 107, Los Angeles, California 90089, United States
| | - Sohail Murad
- Department of Chemical Engineering, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
| | - Tao Wei
- Chemical Engineering Department, Howard University, 2366 Sixth Street NW, Washington, District of Columbia 20059, United States
| |
Collapse
|