1
|
Taylor JM, Gerton KH, Conboy JC. Does vitamin E behave like cholesterol? An examination of vitamin E's effects on phospholipid membrane structure and dynamics through sum-frequency vibrational spectroscopy. Biophys J 2025; 124:1226-1244. [PMID: 40055893 PMCID: PMC12044400 DOI: 10.1016/j.bpj.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025] Open
Abstract
Vitamin E (VE) has historically been described as an antioxidant and its roles in radical species scavenging and nutrition are well studied. VE has been proposed to have secondary roles within the membrane but these roles are not as well characterized, with contradictory results emerging throughout the literature. Due to similar structural motifs, comparisons between VE and cholesterol (CHO), another membrane component, have been commonly made. Despite these comparisons showing that phospholipid-CHO and phospholipid-VE interactions may behave similarly, VE's potential influence on phospholipid flip-flop specifically is not as well studied when compared with CHO's influence. Here, we show through the use of sum-frequency vibrational spectroscopy that VE at both biological (0.5-1.5 mol %) and supraphysiological (2.5-5 mol %) concentrations shows similar characteristics to that of CHO in its ability to induce alkyl chain ordering of phospholipids within planar supported lipid bilayers of the saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. In addition to chain ordering, the introduction of VE accelerates phospholipid flip-flop by approximately three times (0.5-2.5 mol %) with rates approaching an order-of-magnitude increase (5 mol %) at high VE content. The increase in phospholipid flip-flop rates is attributed to the decrease in the molar compression modulus of the membrane. These results suggest that VE influences the ordering and compressibility of the membrane similar to CHO.
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Kai H Gerton
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
2
|
Wang X, Rusinova R, Gregorio GG, Boudker O. Free fatty acids inhibit an ion-coupled membrane transporter by dissipating the ion gradient. J Biol Chem 2024; 300:107955. [PMID: 39491650 DOI: 10.1016/j.jbc.2024.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Glutamate is the main excitatory transmitter in the mammalian central nervous system; glutamate transporters keep the synaptic glutamate concentrations at bay for normal brain function. Arachidonic acid (AA), docosahexaenoic acid, and other unsaturated fatty acids modulate glutamate transporters in cell- and tissue slices-based studies. Here, we investigated their effect and mechanism using a purified archaeal glutamate transporter homolog reconstituted into the lipid membranes. AA, docosahexaenoic acid, and related fatty acids irreversibly inhibited the sodium-dependent concentrative substrate uptake into lipid vesicles within the physiologically relevant concentration range. In contrast, AA did not inhibit amino acid exchange across the membrane. The length and unsaturation of the aliphatic tail affect inhibition, and the free carboxylic headgroup is necessary. The inhibition potency did not correlate with the fatty acid effects on the bilayer deformation energies. AA does not affect the conformational dynamics of the protein, suggesting it does not inhibit structural transitions necessary for transport. Single-transporter and membrane voltage assays showed that AA and related fatty acids mediate cation leak, dissipating the driving sodium gradient. Thus, such fatty acids can act as cation ionophores, suggesting a general modulatory mechanism of membrane channels and ion-coupled transporters.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA.
| | - Radda Rusinova
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - G Glenn Gregorio
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA; Howard Hughes Medical Institute, Weill Cornell Medicine, New York, New York, USA
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA; Howard Hughes Medical Institute, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
3
|
Taylor JM, Conboy JC. Issues with lipid probes in flip-flop measurements: A comparative study using sum-frequency vibrational spectroscopy and second-harmonic generation. J Chem Phys 2024; 161:085104. [PMID: 39185850 DOI: 10.1063/5.0226075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Fluorescent lipid probes such as 1-palmitoyl-2-(6-[7-nitro-2-1,3-benzoxadiazol-4-yl]amino-hexanoyl)-sn-glycero-3-phosphocholine (C6 NBD-PC) have been used extensively to study the kinetics of lipid flip-flop. However, the efficacy of these probes as reliable reporters of native lipid translocation has never been tested. In this study, sum-frequency vibrational spectroscopy (SFVS) was used to measure the kinetics of C6 NBD-PC lipid flip-flop and the flip-flop of native lipids in planar supported lipid bilayers. C6 NBD-PC was investigated at concentrations of 1 and 3 mol. % in both chain-matched 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and chain-mismatched 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) to assess the ability of C6 NBD-PC to mimic the behavior of the surrounding matrix lipids. It was observed that C6 NBD-PC exhibited faster flip-flop kinetics compared to the native lipids in both DPPC and DSPC matrices, with notably accelerated rates in the chain-mismatched DSPC system. SFVS was also used to measure the acyl chain orientation and gauche content of C6 NBD-PC in both DPPC and DSPC membranes. In the DSPC matrix (chain mismatched), C6 NBD-PC was more disordered in terms of both gauche content and acyl tilt, whereas it maintained an orientation similar to that of the native lipids in the DPPC matrix (chain matched). In addition, the flip-flop kinetics of C6 NBD-PC were also measured using second-harmonic generation (SHG) spectroscopy, by probing the motion of the NBD chromophore directly. The flip-flop kinetics measured by SHG were consistent with those obtained from SFVS. This study also marks the first instance of phospholipid flip-flop kinetics being measured via SHG. The results of this study clearly demonstrate that C6 NBD-PC does not adequately mimic the behavior of native lipids within a membrane. These findings also highlight the significant impact of the lipid matrix on the flip-flop behavior of the fluorescently labeled lipid, C6 NBD-PC.
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, USA
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, USA
| |
Collapse
|
4
|
Taylor JM, Conboy JC. Sum-frequency vibrational spectroscopy, a tutorial: Applications for the study of lipid membrane structure and dynamics. Biointerphases 2024; 19:031201. [PMID: 38738942 DOI: 10.1116/6.0003594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Planar supported lipid bilayers (PSLBs) are an ideal model for the study of lipid membrane structures and dynamics when using sum-frequency vibrational spectroscopy (SFVS). In this paper, we describe the construction of asymmetric PSLBs and the basic SFVS theory needed to understand and make measurements on these membranes. Several examples are presented, including the determination of phospholipid orientation and measuring phospholipid transmembrane translocation (flip-flop).
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| |
Collapse
|
5
|
Liu X, Xu X, Zhang T, Xu L, Tao H, Liu Y, Zhang Y, Meng X. Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytother Res 2023; 37:4976-4998. [PMID: 37533230 DOI: 10.1002/ptr.7965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Cardiovascular diseases are currently the primary cause of mortality in the whole world. Growing evidence indicated that the disturbances in cardiac fatty acid metabolism are crucial contributors in the development of cardiovascular diseases. The abnormal cardiac fatty acid metabolism usually leads to energy deficit, oxidative stress, excessive apoptosis, and inflammation. Targeting fatty acid metabolism has been regarded as a novel approach to the treatment of cardiovascular diseases. However, there are currently no specific drugs that regulate fatty acid metabolism to treat cardiovascular diseases. Many traditional Chinese medicines have been widely used to treat cardiovascular diseases in clinics. And modern studies have shown that they exert a cardioprotective effect by regulating the expression of key proteins involved in fatty acid metabolism, such as peroxisome proliferator-activated receptor α and carnitine palmitoyl transferase 1. Hence, we systematically reviewed the relationship between fatty acid metabolism disorders and four types of cardiovascular diseases including heart failure, coronary artery disease, cardiac hypertrophy, and diabetic cardiomyopathy. In addition, 18 extracts and eight monomer components from traditional Chinese medicines showed cardioprotective effects by restoring cardiac fatty acid metabolism. This work aims to provide a reference for the finding of novel cardioprotective agents targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Salvador Lopez JM, Jezierska S, Ekim Kocabey A, Lee J, Schneiter R, Van Bogaert INA. The oleaginous yeast Starmerella bombicola reveals limitations of Saccharomyces cerevisiae as a model for fatty acid transport studies. FEMS Yeast Res 2022; 22:6832774. [PMID: 36398741 DOI: 10.1093/femsyr/foac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Saccharomyces cerevisiae is the model organism to most yeast researchers, and information obtained from its physiology is generally extrapolated to other yeasts. Studies on fatty acid transport in S. cerevisiae are based on the expression of both native fatty acid export genes as well as heterologous proteins. Starmerella bombicola, on the other hand, is an oleaginous yeast of industrial relevance but its fatty acid transport mechanisms are unknown. In this study, we attempt to use existing knowledge from S. cerevisiae to study fatty acid transport in S. bombicola, but the obtained results differ from those observed in S. cerevisiae. First, we observed that deletion of SbPRY1 in S. bombicola leads to higher fatty acid export, the opposite effect to the one previously observed for the Pry homologues in S. cerevisiae. Second, following reports that human FATP1 could export fatty acids and alcohols in S. cerevisiae, we expressed FATP1 in a fatty acid-accumulating S. bombicola strain. However, FATP1 reduced fatty acid export in S. bombicola, most likely due to its acyl-CoA synthetase activity. These results not only advance knowledge on fatty acid physiology of S. bombicola, but also improve our understanding of S. cerevisiae and its limitations as a model organism.
Collapse
Affiliation(s)
| | - Sylwia Jezierska
- Centre for Synthetic Biology, Ghent University, Belgium.,Avecom N.V., Industrieweg 122P 9032 Wondelgem, Belgium
| | | | - Jungho Lee
- Centre for Synthetic Biology, Ghent University, Belgium
| | | | | |
Collapse
|
7
|
Kneiszl R, Hossain S, Larsson P. In Silico-Based Experiments on Mechanistic Interactions between Several Intestinal Permeation Enhancers with a Lipid Bilayer Model. Mol Pharm 2022; 19:124-137. [PMID: 34913341 PMCID: PMC8728740 DOI: 10.1021/acs.molpharmaceut.1c00689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023]
Abstract
Oral administration of drugs is generally considered convenient and patient-friendly. However, oral administration of biological drugs exhibits low oral bioavailability (BA) due to enzymatic degradation and low intestinal absorption. A possible approach to circumvent the low BA of oral peptide drugs is to coformulate the drugs with permeation enhancers (PEs). PEs have been studied since the 1960s and are molecules that enhance the absorption of hydrophilic molecules with low permeability over the gastrointestinal epithelium. In this study, we investigated the impact of six PEs on the structural properties of a model membrane using molecular dynamics (MD) simulations. The PEs included were the sodium salts of the medium chain fatty acids laurate, caprate, and caprylate and the caprylate derivative SNAC─all with a negative charge─and neutral caprate and neutral sucrose monolaurate. Our results indicated that the PEs, once incorporated into the membrane, could induce membrane leakiness in a concentration-dependent manner. Our simulations suggest that a PE concentration of at least 70-100 mM is needed to strongly affect transcellular permeability. The increased aggregation propensity seen for neutral PEs might provide a molecular-level mechanism for the membrane disruptions seen at higher concentrations in vivo. The ability for neutral PEs to flip-flop across the lipid bilayer is also suggestive of possible intracellular modes of action other than increasing membrane fluidity. Taken together, our results indicate that MD simulations are useful for gaining insights relevant to the design of oral dosage forms based around permeability enhancer molecules.
Collapse
Affiliation(s)
- Rosita Kneiszl
- Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
- The
Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
| | - Shakhawath Hossain
- Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
- The
Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
| | - Per Larsson
- Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
- The
Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
| |
Collapse
|
8
|
Urakami N, Sakuma Y, Chiba T, Imai M. Vesicle deformation and division induced by flip-flops of lipid molecules. SOFT MATTER 2021; 17:8434-8445. [PMID: 34473188 DOI: 10.1039/d1sm00847a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigated the deformation of small unilamellar vesicles (SUVs) induced by flip-flops of lipids using coarse-grained molecular dynamics simulations. In the case of single-component SUVs composed of zero spontaneous curvature lipids (ZLs), the flip-flop of ZLs deformed stomatocyte-shaped SUVs into an oblate shape, whereas pear-shaped SUVs were deformed into a prolate shape. These two equilibrium shapes comply with the local minima of elastic energy. In the case of binary vesicles composed of ZLs and negative spontaneous curvature lipids (NLs), the vesicle deformation pathway depended on the initial NL distribution in the bilayer. If the initial difference in the NL concentration between the outer and inner leaflets was small, the flip-flop of ZLs and NLs rapidly deformed pear-shaped SUVs into an equilibrium prolate shape. On the other hand, when NLs were localised in the inner leaflet, the flip-flop of ZLs and NLs deformed pear-shaped SUVs into a limiting shape and then induced vesicle division. Because the flip-flop rate of NLs is much faster than that of ZLs, the total free energy was first relaxed by the flip-flop of NLs and then by that of ZLs. This kinetic effect is responsible for the observed vesicle division induced by flip-flops.
Collapse
Affiliation(s)
- Naohito Urakami
- Department of Physics and Informatics, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512, Japan.
| | - Yuka Sakuma
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Toshikaze Chiba
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Masayuki Imai
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Wilhelm MJ, Dai HL. Molecule-Membrane Interactions in Biological Cells Studied with Second Harmonic Light Scattering. Chem Asian J 2019; 15:200-213. [PMID: 31721448 DOI: 10.1002/asia.201901406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/12/2019] [Indexed: 12/13/2022]
Abstract
The nonlinear optical phenomenon second harmonic light scattering (SHS) can be used for detecting molecules at the membrane surfaces of living biological cells. Over the last decade, SHS has been developed for quantitatively monitoring the adsorption and transport of small and medium size molecules (both neutral and ionic) across membranes in living cells. SHS can be operated with both time and spatial resolution and is even capable of isolating molecule-membrane interactions at specific membrane surfaces in multi-membrane cells, such as bacteria. In this review, we discuss select examples from our lab employing time-resolved SHS to study real-time molecular interactions at the plasma membranes of biological cells. We first demonstrate the utility of this method for determining the transport rates at each membrane/interface in a Gram-negative bacterial cell. Next, we show how SHS can be used to characterize the molecular mechanism of the century old Gram stain protocol for classifying bacteria. Additionally, we examine how membrane structures and molecular charge and polarity affect adsorption and transport, as well as how antimicrobial compounds alter bacteria membrane permeability. Finally, we discuss adaptation of SHS as an imaging modality to quantify molecular adsorption and transport in sub-cellular regions of individual living cells.
Collapse
Affiliation(s)
- Michael J Wilhelm
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|