1
|
Chen Q, Yu L, Han X. Understanding Protein Adsorption on Carbon Nanotube Inner and Outer Surfaces by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4318-4333. [PMID: 39905788 DOI: 10.1021/acs.langmuir.4c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Biomolecules, such as proteins, can form complexes with carbon nanotubes (CNTs), which have numerous applications in nanobiotechnology. Proteins can be adsorbed onto either the inner walls or outer surfaces of CNTs via van der Waals interactions; however, the differences between these two processes remain poorly understood. In this work, we performed classical all-atom molecular dynamics simulations with explicit solvents to investigate the interaction between a model protein, the Yap65 WW domain, and (22,22) CNTs and larger. The Yap65 WW domain comprises three β-sheet segments and contains three key aromatic residues: TRP17, TYR28, and TRP39. Our findings reveal distinct interaction mechanisms for the inner and outer surfaces of large CNTs. The protein's interaction with the inner surface is governed by the interplay between surface curvature and adsorption orientation. In the confined space of the CNT channel, variations in tube curvature and adsorption orientation give rise to specific binding modes, resulting in varying degrees of protein conformational change. In contrast, on the outer surface of large CNTs, where space is less restricted, the adsorption orientation plays a more dominant role. Specifically, the orientation in which more aromatic residues directly interact with the surface suffer from the greater structural loss, regardless of the tube curvature. Finally, protein-CNT binding free energies were calculated using the Poisson-Boltzmann surface area (MM-PBSA) method and steered molecular dynamics simulations based on Jarzynski equality, demonstrating that protein desorption from CNTs is highly dependent on binding configurations. This study reveals the influence of confined space on protein adsorption and the critical role of CNT curvature in modulating β-sheet stability.
Collapse
Affiliation(s)
- Qu Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Linkai Yu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Xiaoyu Han
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| |
Collapse
|
2
|
Xiao Y, Zhou Z, Zuo Y, Wu X, Liu Y, Li Y, Gao Y, Zhang X, Wang Y, Hu L, Li C. Layer-by-layer fabrication of alginate/polyethyleneimine multilayer on magnetic interface with enhanced efficiency in immuno-capturing circulating tumor cells. Anal Chim Acta 2024; 1312:342778. [PMID: 38834257 DOI: 10.1016/j.aca.2024.342778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The technology of capturing circulating tumor cells (CTCs) plays a crucial role in the diagnosis, evaluation of therapeutic efficacy, and prediction of prognosis in lung cancer. However, the presence of complex blood environment often results in severe nonspecific protein adsorption and interferences from blood cells, which negatively impacts the specificity of CTCs capture. There is a great need for development of novel nanomaterials for CTCs capture with prominent anti-nonspecific adsorptions from proteins or blood cells. RESULTS We present a novel immune magnetic probe Fe3O4@(PEI/AA)4@Apt. The surface of Fe3O4 particles was modified with four layers of PEI/AA composite by layer-by-layer assembly. Furthermore, aptamers targeting epithelial marker EpCAM (SYL3C) and mesenchymal marker CSV (ZY5C) were simultaneously connected on Fe3O4@(PEI/AA)4 to improve the detection of different phenotypic CTCs and reduce false negatives. The results demonstrated that the (PEI/AA)4 coatings not only minimized non-specific protein adsorptions, but also significantly reduced the adsorption rate of red blood cells to a mere 1 %, as a result of which, the Fe3O4@(PEI/AA)4@Apt probe achieved a remarkably high capture efficiency toward CTCs (95.9 %). In the subsequent validation of clinical samples, the probe was also effective in capturing rare CTCs from lung cancer patients. SIGNIFICANCE AND NOVELTY A (PEI/AA) polymerized composite with controllable layers was fabricated by layer-by-layer self-assembly technique, which displayed remarkable anti-nonspecific adsorption capabilities toward proteins and cells. Importantly, Fe3O4@(PEI/AA)4@Apt probe significantly improved CTCs capture purity in lung cancer patients to 89.36 %. For the first time, this study combined controllable (PEI/AA) layers with magnetic separation to innovatively build a resistant interface that significantly improves the specific capture performances of CTCs, broadening the application of this polymerized composite.
Collapse
Affiliation(s)
- Yang Xiao
- School of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Zhiyi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yifan Zuo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xueyuan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yuping Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yichen Li
- School of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yuetong Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xiashu Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yu Wang
- Department of Pharmacy, Xuzhou Traditional Chinese Medicine Hospital, 169 Zhongshan South Road, Xuzhou, 221004, China
| | - Lili Hu
- Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, 221004, China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
3
|
Chen Q, Zhou J, Sun R. Carbon Nanotube Loading Strategies for Peptide Drugs: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13515-13526. [PMID: 38887887 DOI: 10.1021/acs.langmuir.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Carbon nanotubes (CNTs) can be regarded as a potential platform for transmembrane drug delivery as many experimental works have demonstrated their capability to effectively transport bioactive molecules into living cells. Within this framework, the loading of a peptide drug onto either the interior or exterior of CNTs has gained considerable interest. This study aims to conduct a comprehensive comparison of these two loading methods. To this end, we performed molecular dynamics simulations and the umbrella sampling technique to investigate the interaction energy, conformational changes, and free energy changes of a model peptide drug containing α-helical structure interacting with the inner or outer walls of a 14.7-nm-long (20,20) CNT. Our finding reveals that, for a tube of such dimensions, it is thermodynamically more favorable for the peptide to be loaded onto the inner tube wall than the outer tube wall, primarily due to a larger free energy change for the former strategy. Conversely, unloading the drug from the tube interior poses greater challenges. Moreover, the tube's curvature plays an essential role in influencing the conformation of the adsorbed peptide. Despite the relatively weaker van der Waals interaction between the CNT exterior and the peptide, loading the peptide onto the exterior may induce significant conformational changes, particularly affecting the peptide's α-helix structure. In contrast, loading of the peptide on the CNT interior could maintain most of the α-helical content. CNTs do not typically attract specific peptide residues, with adsorbed groups primarily determined by the peptide's configurations and orientations. Finally, we offer a guideline for selecting an optimal loading strategy for CNT-based drug delivery.
Collapse
Affiliation(s)
- Qu Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Jianping Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Rong Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| |
Collapse
|
4
|
Zhai X, Liu X, Dong H, Lin M, Zheng X, Yang Q. Implementation of cytochrome c proteins and carbon nanotubes hybrids in bioelectrodes towards bioelectrochemical systems applications. Bioprocess Biosyst Eng 2024; 47:159-168. [PMID: 37922017 DOI: 10.1007/s00449-023-02933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2023]
Abstract
Multiheme cytochrome c (Cyt c) can function as a redox protein on electrode to accomplish bioelectrocatalysis. However, the direct electron transfer (DET) between the redox site of Cyt c and electrode is low due to the large coupling distance. A close proximity or a connection pathway from the deeply buried active site to the protein surface can be established by modifying the electrode with carbon nanotubes (CNTs) to improve the DET. Therefore, the isolated Cyt c has been assembled or casted with CNTs by various processes to form Cyt c-CNTs bioelectrodes that can be further applied to biosensing and bioanalysis. These strategies can be transplanted to the fabrication of biofilm-CNTs based electrodes by complexing the out membrane (OM) Cyt c of natural electricigen with CNTs to realize the application of the electrochemical properties of "in vivo" Cyt c to bioelectrochemical systems (BESs). This review intends to highlight the preparation strategies of bioelectrodes that have been well studied in electrochemical biosensors and improving approaches of the DET from the CNTs surface to Cyt c in their hybrids. The efficient fabrication processes of the biofilm-CNTs based electrodes that can be considered as "in vivo" Cyt c-CNTs based electrodes for BES designs are also summarized, aiming to provide an inspiration source and a reference to the related studies of BES downstream.
Collapse
Affiliation(s)
- Xinru Zhai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Xiaojun Liu
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Huihui Dong
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Mingzhen Lin
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Xinxin Zheng
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Qinzheng Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China.
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Yadav N, Mor S, Venkatesu P. The attenuating ability of deep eutectic solvents towards the carboxylated multiwalled carbon nanotubes induced denatured β-lactoglobulin structure. Phys Chem Chem Phys 2023. [PMID: 37470288 DOI: 10.1039/d3cp02908e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The stabilization of proteins has been a major challenge for their practical utilization in industrial applications. Proteins can easily lose their native conformation in the presence of denaturants, which unfolds the protein structure. Since the introduction of deep eutectic solvents (DESs), there are numerous studies in which DESs act as promising co-solvents that are biocompatible with biomolecules. DESs have emerged as sustainable biocatalytic media and an alternative to conventional organic solvents and ionic liquids (ILs). However, the superiority of DESs over the deleterious influence of denaturants on proteins is often neglected. To address this, we present the counteracting ability of biocompatible DESs, namely, choline chloride-glycerol (DES-1) and choline chloride-urea (DES-2), against the structural changes induced in β-lactoglobulin (Blg) by carboxylated multiwalled carbon nanotubes (CA-MWCNTs). The work is substantiated with various spectroscopic and thermal studies. The spectroscopic results revealed that the fluorescence emission intensity enhances for the protein in DESs. Contrary to this, the emission intensity extremely quenches in the presence of CA-MWCNTs. However, in the mixture of DESs and CA-MWCNTs, there was a slight increase in the fluorescence intensity. Circular dichroism spectral studies reflect the reappearance of the native band that was lost in the presence of CA-MWCNTs, which is a good indicator of the counteraction ability of DESs. Further, thermal fluorescence studies showed that the protein exhibited extremely great thermal stability in both DESs as well as in the mixture of DES-CA-MWCNTs compared to the protein in buffer. This study is also supported by dynamic light scattering and zeta potential measurements; the results reveal that DESs were successfully able to maintain the protein structure. The addition of CA-MWCNTs results in complex formation with the protein, which is indicated by the increased hydrodynamic size of the protein. The presence of DESs in the mixture of CA-MWCNTs and DESs was quite successful in eliminating the negative impact of CA-MWCNTs on protein structural alteration. DES-1 proved to be superior to DES-2 over counteraction against CA-MWCNTs and maintained the native conformation of the protein. Overall, both DESs act as recoiling media for both native and unfolded (denatured by CA-MWCNTs) Blg structures. Both the DESs can be described as potential co-solvents for Blg with increased structural and thermal stability of the protein. To the best of our knowledge, this study for the first time has demonstrated the role of choline-based DESs in the mixture with CA-MWCNTs in the structural transition of Blg. The DESs in the mixture successfully enhance the stability of the protein by reducing the perturbation caused by CA-MWCNTs and then amplifying the advantages of the DESs present in the mixture. Overall, these results might find implications for understanding the role of DES-CA-MWCNT mixtures in protein folding/unfolding and pave a new direction for the development of eco-friendly protein-protective solvents.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Sanjay Mor
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
6
|
Anosov A, Borisova E, Smirnova E, Korepanova E, Osipov A. Effect of Cytochrome C on the Conductance of Asolectin Membranes and the Occurrence of Through Pores at Different pHs. MEMBRANES 2023; 13:268. [PMID: 36984655 PMCID: PMC10053876 DOI: 10.3390/membranes13030268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The study of the electrical parameters of asolectin bilayer lipid membranes in the presence of cytochrome c (cyt c) at various concentrations showed that an increase in the concentration of cyt c leads to an increase in the membrane conductance and the appearance of through pores. The studied membranes did not contain cardiolipin, which is commonly used in studying the effect of cyt c on membrane permeability. In the presence of cyt c, discrete current fluctuations were recorded. The occurrence of these fluctuations may be associated with the formation of through pores. The diameter of these pores was ~0.8 nm, which is smaller than the size of the cyt c globule (~3 nm). Measurements carried out at pH values from 6.4 to 8.4 showed that the concentration dependence of the membrane conductance increases with increasing pH. To assess the binding of cyt c to the bilayer, we measured the concentration and pH dependences of the difference in surface potentials induced by the unilateral addition of cyt c. The amount of bound cyt c at the same concentrations decreased with increasing pH, which did not correspond to the conductance trend. An analysis of conductance traces leads to the conclusion that an increase in the integral conductance of membranes is associated with an increase in the lifetime of pores. The formation of "long-lived" pores, of which the residence time in the open state is longer than in the closed state, was achieved at various combinations of pHs and cyt c concentrations: the higher the pH, the lower the concentration at which the long-lived pores appeared and, accordingly, a higher conductance was observed. The increase in conductance and the formation of transmembrane pores are not due to the electrostatic interaction between cyt c and the membrane. We hypothesize that an increase in pH leads to a weakening of hydrogen bonds between lipid heads, which allows cyt c molecules to penetrate into the membrane. This disrupts the order of the bilayer and leads to the occurrence of through pores.
Collapse
Affiliation(s)
- Andrey Anosov
- The Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Kotelnikov Institute of Radioengineering and Electronics of RAS, 125009 Moscow, Russia
| | - Elizaveta Borisova
- The Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Elena Smirnova
- The Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Eugenia Korepanova
- The Department of General and Medical Biophysics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anatoly Osipov
- The Department of General and Medical Biophysics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
7
|
Li B, Mi C. On the chirality-dependent adsorption behavior of volatile organic compounds on carbon nanotubes. Phys Chem Chem Phys 2021; 23:21941-21950. [PMID: 34569566 DOI: 10.1039/d1cp02740a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The capture and removal of volatile organic compounds (VOCs) have received extensive attention due to their toxicity and carcinogenicity. In order to extend the applications of carbon nanotubes (CNTs) in this field, a deep understanding of the interaction mechanism between VOCs and CNTs is crucial. In this article, molecular dynamics simulations are performed to systematically investigate the multi-molecule adsorption behavior of four representative VOC species on CNTs with a variety of chirality indices. Simulation results reveal that different VOC species exhibit significantly different adsorption preferences on CNTs. For both zigzag and armchair CNTs, the adsorption affinity is positively correlated with the hydrophobicity of VOC molecules and follows the order of toluene > ether > acetone > methanol. This adsorption preference is supported by the binding free energy calculations resulting from the umbrella sampling algorithm. Moreover, the adsorption affinity increases with the diameter of both zigzag and armchair CNTs. Furthermore, the effects of diameter become more significant for those VOC species possessing higher hydrophobicity. As for the effects of chirality, zigzag CNTs show greater adsorption affinity than armchair ones with similar diameters. However, simulation results also indicate that the adsorption affinity does not vary monotonically from zigzag to armchair orientations, leading to additional complexities of harvesting and elimination of VOC molecules in terms of CNTs. Results and data analysis presented in this work suggest that CNT chirality is an important factor for controlling the adsorption of harmful VOC molecules on CNT surfaces.
Collapse
Affiliation(s)
- Bin Li
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Changwen Mi
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
8
|
Kumar S, Kumar K, Yadav R, Kukutla P, Devunuri N, Deenadayalu N, Venkatesu P. Understanding the close encounter of heme proteins with carboxylated multiwalled carbon nanotubes: a case study of contradictory stability trend for hemoglobin and myoglobin. Phys Chem Chem Phys 2021; 23:19740-19751. [PMID: 34525143 DOI: 10.1039/d1cp02167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes (CNTs) are one of the unique and promising nanomaterials that possess plenty of applications, such as biosensors, advanced drug delivery systems and biotechnology. CNTs bind rapidly with proteins, which result in the formation of a protein coating layer known as a "protein corona" around the surface of the nanomaterial. This hinders their applications as a drug carrier and influences the properties of biological macromolecules. The present work focuses on studying the thermal stability and molecular level interactions of two heme proteins, hemoglobin (Hb) and myoglobin (Mb), in the presence of carboxylated functionalized multi-walled CNTs (CA-MWCNTs). Through the current study, the following steps have been taken to distinguish the biocompatibility of the hydrophilic surface CA-MWCNTs for heme proteins via a series of spectroscopic techniques and differential scanning calorimetry (DSC). UV-Visible and steady-state fluorescence spectroscopy were used to reveal changes in the aromatic amino acid residues of heme proteins upon the addition of CA-MWCNTs. Circular dichroism spectroscopy (CD) shows the alteration in the native structure of proteins in the presence of the nanomaterial. A tremendous increase in the size of the protein CA-MWCNTs system is observed in dynamic light scattering (DLS), which clearly manifests the protein corona formation. Unexpectedly, both proteins interact differently with CA-MWCNTs, which is observed in CD spectroscopy and DSC. In the presence of CA-MWCNTs, an increase in the transition temperature (Tm) was observed for Hb, while the Tm value decreases for Mb. Different interactions with proteins at the molecular scale may be the reason for this unexpected behavior. Henceforth, the present results can help in the design of the next-generation drug carrier nanomaterials with the idea of the heme protein corona formation prior to development.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Ritu Yadav
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Prasanna Kukutla
- Department of Chemistry, University of Delhi, Delhi-110 007, India. .,Vignan's Foundation for Science, Technology and Research (VFSTR) Deemed to be University, Vadlamudi, Guntur-522 213, Andhra Pradesh, India
| | - Nagaraju Devunuri
- Vignan's Foundation for Science, Technology and Research (VFSTR) Deemed to be University, Vadlamudi, Guntur-522 213, Andhra Pradesh, India
| | - Nirmala Deenadayalu
- Department of Chemistry, Durban University of Technology, Durban-4000, South Africa
| | | |
Collapse
|
9
|
Xu JX, Alom MS, Fitzkee NC. Quantitative Measurement of Multiprotein Nanoparticle Interactions Using NMR Spectroscopy. Anal Chem 2021; 93:11982-11990. [PMID: 34432422 DOI: 10.1021/acs.analchem.1c01911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An effective intensity-based reference is a cornerstone for quantitative nuclear magnetic resonance (NMR) studies, as the molecular concentration is encoded in its signal. In theory, NMR is well suited for the measurement of competitive protein adsorption onto nanoparticle (NP) surfaces, but current referencing systems are not optimized for multidimensional experiments. Presented herein is a simple and novel referencing system using 15N tryptophan (Trp) as an external reference for 1H-15N 2D NMR experiments. The referencing system is validated by the determination of the binding capacity of a single protein onto gold NPs. Then, the Trp reference is applied to protein mixtures, and signals from each protein are accurately quantified. All results are consistent with previous studies, but with substantially higher precision, indicating that the Trp reference can accurately calibrate the residue peak intensities and reduce systematic errors. Finally, the proposed Trp reference is used to kinetically monitor in situ and in real time the competitive adsorption of different proteins. As a challenging test case, we successfully apply our approach to a mixture of protein variants differing by only a single residue. Our results show that the binding of one protein will affect the binding of the other, leading to an altered NP corona composition. This work therefore highlights the importance of studying protein-NP interactions in protein mixtures in situ, and the referencing system developed here enables the quantification of binding kinetics and thermodynamics of multiple proteins using various 1H-15N 2D NMR techniques.
Collapse
Affiliation(s)
- Joanna Xiuzhu Xu
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Md Siddik Alom
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| |
Collapse
|
10
|
Quan K, Hou J, Zhang Z, Ren Y, Peterson BW, Flemming HC, Mayer C, Busscher HJ, van der Mei HC. Water in bacterial biofilms: pores and channels, storage and transport functions. Crit Rev Microbiol 2021; 48:283-302. [PMID: 34411498 DOI: 10.1080/1040841x.2021.1962802] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial biofilms occur in many natural and industrial environments. Besides bacteria, biofilms comprise over 70 wt% water. Water in biofilms occurs as bound- or free-water. Bound-water is adsorbed to bacterial surfaces or biofilm (matrix) structures and possesses different Infra-red and Nuclear-Magnetic-Resonance signatures than free-water. Bound-water is different from intra-cellularly confined-water or water confined within biofilm structures and bacteria are actively involved in building water-filled structures by bacterial swimmers, dispersion or lytic self-sacrifice. Water-filled structures can be transient due to blocking, resulting from bacterial growth, compression or additional matrix formation and are generally referred to as "channels and pores." Channels and pores can be distinguished based on mechanism of formation, function and dimension. Channels allow transport of nutrients, waste-products, signalling molecules and antibiotics through a biofilm provided the cargo does not adsorb to channel walls and channels have a large length/width ratio. Pores serve a storage function for nutrients and dilute waste-products or antimicrobials and thus should have a length/width ratio close to unity. The understanding provided here on the role of water in biofilms, can be employed to artificially engineer by-pass channels or additional pores in industrial and environmental biofilms to increase production yields or enhance antimicrobial penetration in infectious biofilms.
Collapse
Affiliation(s)
- Kecheng Quan
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, P.R. China
| | - Jiapeng Hou
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, P.R. China
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Brandon W Peterson
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences/Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Faculty of Chemistry, Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Christian Mayer
- Faculty of Chemistry, Physical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Osella S. Artificial Photosynthesis: Is Computation Ready for the Challenge Ahead? NANOMATERIALS 2021; 11:nano11020299. [PMID: 33498961 PMCID: PMC7911014 DOI: 10.3390/nano11020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
A tremendous effort is currently devoted to the generation of novel hybrid materials with enhanced electronic properties for the creation of artificial photosynthetic systems. This compelling and challenging problem is well-defined from an experimental point of view, as the design of such materials relies on combining organic materials or metals with biological systems like light harvesting and redox-active proteins. Such hybrid systems can be used, e.g., as bio-sensors, bio-fuel cells, biohybrid photoelectrochemical cells, and nanostructured photoelectronic devices. Despite these efforts, the main bottleneck is the formation of efficient interfaces between the biological and the organic/metal counterparts for efficient electron transfer (ET). It is within this aspect that computation can make the difference and improve the current understanding of the mechanisms underneath the interface formation and the charge transfer efficiency. Yet, the systems considered (i.e., light harvesting protein, self-assembly monolayer and surface assembly) are more and more complex, reaching (and often passing) the limit of current computation power. In this review, recent developments in computational methods for studying complex interfaces for artificial photosynthesis will be provided and selected cases discussed, to assess the inherent ability of computation to leave a mark in this field of research.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| |
Collapse
|
12
|
Ren Y, Zhou H, Lu J, Huang S, Zhu H, Li L. Theoretical and Experimental Optimization of the Graft Density of Functionalized Anti-Biofouling Surfaces by Cationic Brushes. MEMBRANES 2020; 10:membranes10120431. [PMID: 33348625 PMCID: PMC7766574 DOI: 10.3390/membranes10120431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Diseases and complications related to catheter materials are severe problems in biomedical material applications, increasing the infection risk and medical expenses. Therefore, there is an enormous demand for catheter materials with antibacterial and antifouling properties. Considering this, in this work, we developed an approach of constructing antibacterial surfaces on polyurethane (PU) via surface-initiated atom transfer radical polymerization (SI-ATRP). A variety of cationic polymers were grafted on PU. The biocompatibility and antifouling properties of all resulting materials were evaluated and compared. We also used a theoretical algorithm to investigate the anticoagulant mechanism of our PU-based grafts. The hemocompatibility and anti-biofouling performance improved at a 86–112 μg/cm2 grafting density. The theoretical simulation demonstrated that the in vivo anti-fouling performance and optimal biocompatibility of our PU-based materials could be achieved at a 20% grafting degree. We also discuss the mechanism responsible for the hemocompatibility of the cationic brushes fabricated in this work. The results reported in this paper provide insights and novel ideas on material design for applications related to medical catheters.
Collapse
Affiliation(s)
- Yijie Ren
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Hongxia Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jin Lu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Sicheng Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Haomiao Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Correspondence: (H.Z.); (L.L.)
| | - Li Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China; (Y.R.); (H.Z.); (J.L.); (S.H.)
- School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, No. 1 Wenyuan Road, Nanjing 210023, China
- Correspondence: (H.Z.); (L.L.)
| |
Collapse
|