1
|
Asthagiri DN, Valiya Parambathu A, Beck TL. Consequences of the failure of equipartition for the p- V behavior of liquid water and the hydration free energy components of a small protein. Chem Sci 2025; 16:7503-7512. [PMID: 40160355 PMCID: PMC11951161 DOI: 10.1039/d4sc08437c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Earlier we showed that in the molecular dynamics simulation of a rigid model of water it is necessary to use an integration time-step δ t ≤ 0.5 fs to ensure equipartition between translational and rotational modes. Here we extend that study in the NVT ensemble to NpT conditions and to an aqueous protein. We study neat liquid water with the rigid, SPC/E model and the protein BBA (PDB ID: 1FME) solvated in the rigid, TIP3P model. We examine integration time-steps ranging from 0.5 fs to 4.0 fs for various thermostat plus barostat combinations. We find that a small δ t is necessary to ensure consistent prediction of the simulation volume. Hydrogen mass repartitioning alleviates the problem somewhat, but is ineffective for the typical time-step used with this approach. The compressibility, a measure of volume fluctuations, and the dielectric constant, a measure of dipole moment fluctuations, are also seen to be sensitive to δ t. Using the mean volume estimated from the NpT simulation, we examine the electrostatic and van der Waals contribution to the hydration free energy of the protein in the NVT ensemble. These contributions are also sensitive to δ t. In going from δ t = 2 fs to δ t = 0.5 fs, the change in the net electrostatic plus van der Waals contribution to the hydration of BBA is already in excess of the folding free energy reported for this protein.
Collapse
Affiliation(s)
| | | | - Thomas L Beck
- Oak Ridge National Laboratory One Bethel Valley Road Oak Ridge TN 37830 USA
| |
Collapse
|
2
|
Forder JK, Palakollu V, Adhikari S, Blanco MA, Derebe MG, Ferguson HM, Luthra SA, Munsell EV, Roberts CJ. Electrostatically Mediated Attractive Self-Interactions and Reversible Self-Association of Fc-Fusion Proteins. Mol Pharm 2024; 21:1321-1333. [PMID: 38334418 DOI: 10.1021/acs.molpharmaceut.3c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Attractive self-interactions and reversible self-association are implicated in many problematic solution behaviors for therapeutic proteins, such as irreversible aggregation, elevated viscosity, phase separation, and opalescence. Protein self-interactions and reversible oligomerization of two Fc-fusion proteins (monovalent and bivalent) and the corresponding fusion partner protein were characterized experimentally with static and dynamic light scattering as a function of pH (5 and 6.5) and ionic strength (10 mM to at least 300 mM). The fusion partner protein and monovalent Fc-fusion each displayed net attractive electrostatic self-interactions at pH 6.5 and net repulsive electrostatic self-interactions at pH 5. Solutions of the bivalent Fc-fusion contained higher molecular weight species that prevented quantification of typical interaction parameters (B22 and kD). All three of the proteins displayed reversible self-association at pH 6.5, where oligomers dissociated with increased ionic strength. Coarse-grained molecular simulations were used to model the self-interactions measured experimentally, assess net self-interactions for the bivalent Fc-fusion, and probe the specific electrostatic interactions between charged amino acids that were involved in attractive electrostatic self-interactions. Mayer-weighted pairwise electrostatic energies from the simulations suggested that attractive electrostatic self-interactions at pH 6.5 for the two Fc-fusion proteins were due to cross-domain interactions between the fusion partner domain(s) and the Fc domain.
Collapse
Affiliation(s)
- James K Forder
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Veerabhadraiah Palakollu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Sudeep Adhikari
- Analytical R&D, Digital & NMR Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marco A Blanco
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Mehabaw Getahun Derebe
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Heidi M Ferguson
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Suman A Luthra
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Erik V Munsell
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| |
Collapse
|
3
|
Adhikari RS, Parambathu AV, Chapman WG, Asthagiri DN. Hydration Free Energies of Polypeptides from Popular Implicit Solvent Models versus All-Atom Simulation Results Based on Molecular Quasichemical Theory. J Phys Chem B 2022; 126:9607-9616. [PMID: 36354351 DOI: 10.1021/acs.jpcb.2c05725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Calculating the hydration free energy of a macromolecule in all-atom simulations has long remained a challenge, necessitating the use of models wherein the effect of the solvent is captured without explicit account of solvent degrees of freedom. This situation has changed with developments in the molecular quasi-chemical theory (QCT)─an approach that enables calculation of the hydration free energy of macromolecules within all-atom simulations at the same resolution as is possible for small molecular solutes. The theory also provides a rigorous and physically transparent framework to conceptualize and model interactions in molecular solutions and thus provides a convenient framework to investigate the assumptions in implicit solvent models. In this study, we compare the results using molecular QCT versus predictions from EEF1, ABSINTH, and GB/SA implicit solvent models for polyglycine and polyalanine solutes covering a range of chain lengths and conformations. The hydration free energies or the differences in hydration free energies between conformers obtained from the implicit solvent models do not agree with explicit solvent results, with the deviations being largest for the group additive EEF1 and ABSINTH models. GB/SA does better in capturing the qualitative trends seen in explicit solvent results. Analysis founded on QCT reveals the critical importance of the cooperativity of hydration that is inherent in the hydrophilic and hydrophobic contributions to hydration─physics that is not well captured in additive models but somewhat better accounted for by means of a dielectric in the GB/SA approach.
Collapse
Affiliation(s)
- Rohan S Adhikari
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | - Arjun Valiya Parambathu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19711, United States
| | - Walter G Chapman
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas77005, United States
| | | |
Collapse
|
4
|
Zhuang Y, Thota N, Quirk S, Hernandez R. Implementation of Telescoping Boxes in Adaptive Steered Molecular Dynamics. J Chem Theory Comput 2022; 18:4649-4659. [PMID: 35830368 DOI: 10.1021/acs.jctc.2c00498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-time dynamical processes, such as those involving protein unfolding and ligand interactions, can be accelerated and realized through steered molecular dynamics (SMD). The challenge has been the extraction of information from such simulations that generalize for complex nonequilibrium processes. The use of Jarzynski's equality opened the possibility of determining the free energy along the steered coordinate, but sampling over the nonequilibrium trajectories is slow to converge. Adaptive steered molecular dynamics (ASMD) and other related techniques have been introduced to overcome this challenge through the use of stages. Here, we take advantage of these stages to address the numerical cost that arises from the required use of very large solvent boxes. We introduce telescoping box schemes within adaptive steered molecular dynamics (ASMD) in which we adjust the solvent box between stages and thereby vary (and optimize) the required number of solvent molecules. We have benchmarked the method on a relatively long α-helical peptide, Ala30, with respect to the potential of mean force and hydrogen bonds. We show that the use of telescoping boxes introduces little numerical error while significantly reducing the computational cost.
Collapse
Affiliation(s)
- Yi Zhuang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nikhil Thota
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Stephen Quirk
- Kimberly-Clark Corporation, Atlanta, Georgia 30076-2199, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Meuwly M, Karplus M. The functional role of the hemoglobin-water interface. Mol Aspects Med 2021; 84:101042. [PMID: 34756740 DOI: 10.1016/j.mam.2021.101042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
The interface between hemoglobin (Hb) and its environment, in particular water, is of great physiological relevance. Here, results from in vitro, in vivo, and computational experiments (molecular dynamics simulations) are summarized and put into perspective. One of the main findings from the computations is that the stability of the deoxy, ligand-free T-state (T0) can be stabilized relative to the deoxy R-state (R0) only in sufficiently large simulation boxes for the hydrophobic effect to manifest itself. This effect directly influences protein stability and is operative also under physiological conditions. Furthermore, molecular simulations provide a dynamical interpretation of the Perutz model for Hb function. Results from experiments using higher protein concentrations and realistic cellular environments are also discussed. One of the next great challenges for computational studies, which as we show is likely to be taken up in the near future, is to provide a molecular-level understanding of the dynamics of proteins in such crowded environments.
Collapse
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland; Department of Chemistry, Brown University, Providence RI, USA.
| | - Martin Karplus
- Department of Chemistry, Harvard University, USA; Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
6
|
Asthagiri DN, Paulaitis ME, Pratt LR. Thermodynamics of Hydration from the Perspective of the Molecular Quasichemical Theory of Solutions. J Phys Chem B 2021; 125:8294-8304. [PMID: 34313434 DOI: 10.1021/acs.jpcb.1c04182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The quasichemical organization of the potential distribution theorem, molecular quasichemical theory (QCT), enables practical calculations and also provides a conceptual framework for molecular hydration phenomena. QCT can be viewed from multiple perspectives: (a) as a way to regularize an ill-conditioned statistical thermodynamic problem; (b) as an introduction of and emphasis on the neighborship characteristics of a solute of interest; or (c) as a way to include accurate electronic structure descriptions of near-neighbor interactions in defensible statistical thermodynamics by clearly defining neighborship clusters. The theory has been applied to solutes of a wide range of chemical complexity, ranging from ions that interact with water with both long-ranged and chemically intricate short-ranged interactions, to solutes that interact with water solely through traditional van der Waals interations, and including water itself. The solutes range in variety from monatomic ions to chemically heterogeneous macromolecules. A notable feature of QCT is that, in applying the theory to this range of solutes, the theory itself provides guidance on the necessary approximations and simplifications that can facilitate the calculations. In this Perspective, we develop these ideas and document them with examples that reveal the insights that can be extracted using the QCT formulation.
Collapse
Affiliation(s)
- Dilipkumar N Asthagiri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Michael E Paulaitis
- Center for Nanomedicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Lawrence R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
7
|
Shahfar H, Forder JK, Roberts CJ. Toward a Suite of Coarse-Grained Models for Molecular Simulation of Monoclonal Antibodies and Therapeutic Proteins. J Phys Chem B 2021; 125:3574-3588. [PMID: 33821645 DOI: 10.1021/acs.jpcb.1c01903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of coarse-grained models for molecular simulation of proteins are considered, with emphasis on the application of predicting protein-protein self-interactions for monoclonal antibodies (MAbs). As an illustrative example and for quantitative comparison, the models are used to predict osmotic virial coefficients over a broad range of attractive and repulsive self-interactions and solution conditions for a series of MAbs where the second osmotic virial coefficient has been experimentally determined in prior work. The models are compared based on how well they can predict experimental behavior, their computational burdens, and scalability. An intermediate-resolution model is also introduced that can capture specific electrostatic interactions with improved efficiency and similar or improved accuracy when compared to the previously published models. Guidance is included for the selection of coarse-grained models more generally for capturing a balance of electrostatic, steric, and short-ranged nonelectrostatic interactions for proteins from low to high concentrations.
Collapse
Affiliation(s)
- Hassan Shahfar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - James K Forder
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
8
|
Tomar DS, Paulaitis ME, Pratt LR, Asthagiri DN. Hydrophilic Interactions Dominate the Inverse Temperature Dependence of Polypeptide Hydration Free Energies Attributed to Hydrophobicity. J Phys Chem Lett 2020; 11:9965-9970. [PMID: 33170720 DOI: 10.1021/acs.jpclett.0c02972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We address the association of the hydrophobic driving forces in protein folding with the inverse temperature dependence of protein hydration, wherein stabilizing hydration effects strengthen with increasing temperature in a physiological range. All-atom calculations of the free energy of hydration of aqueous deca-alanine conformers, holistically including backbone and side-chain interactions together, show that attractive peptide-solvent interactions and the thermal expansion of the solvent dominate the inverse temperature signatures that have been interpreted traditionally as the hydrophobic stabilization of proteins in aqueous solution. Equivalent calculations on a methane solute are also presented as a benchmark for comparison. The present study calls for a reassessment of the forces that stabilize folded protein conformations in aqueous solutions and of the additivity of hydrophobic/hydrophilic contributions.
Collapse
Affiliation(s)
- Dheeraj S Tomar
- Xilio Therapeutics Inc., Waltham, Massachusetts 02451, United States
| | - Michael E Paulaitis
- Center for Nanomedicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Lawrence R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Dilipkumar N Asthagiri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Gapsys V, de Groot BL. On the importance of statistics in molecular simulations for thermodynamics, kinetics and simulation box size. eLife 2020; 9:57589. [PMID: 32812868 PMCID: PMC7481008 DOI: 10.7554/elife.57589] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
Computational simulations, akin to wetlab experimentation, are subject to statistical fluctuations. Assessing the magnitude of these fluctuations, that is, assigning uncertainties to the computed results, is of critical importance to drawing statistically reliable conclusions. Here, we use a simulation box size as an independent variable, to demonstrate how crucial it is to gather sufficient amounts of data before drawing any conclusions about the potential thermodynamic and kinetic effects. In various systems, ranging from solvation free energies to protein conformational transition rates, we showcase how the proposed simulation box size effect disappears with increased sampling. This indicates that, if at all, the simulation box size only minimally affects both the thermodynamics and kinetics of the type of biomolecular systems presented in this work.
Collapse
Affiliation(s)
- Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|