1
|
Kato Y, Ito H, Noguchi T. Reaction Mechanism of the Terminal Plastoquinone Q B in Photosystem II as Revealed by Time-Resolved Infrared Spectroscopy. Biochemistry 2024; 63:2778-2792. [PMID: 39411807 DOI: 10.1021/acs.biochem.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The secondary plastoquinone (PQ) electron acceptor QB in photosystem II (PSII) undergoes a two-step photoreaction through electron transfer from the primary PQ electron acceptor QA, converting into plastoquinol (PQH2). However, the detailed mechanism of the QB reactions remains elusive. Here, we investigated the reaction mechanism of QB in cyanobacterial PSII core complexes using two time-revolved infrared (TRIR) methods: dispersive-type TRIR spectroscopy and rapid-scan Fourier transform infrared spectroscopy. Upon the first flash, the ∼140 μs phase is attributed to electron transfer from QA•- to QB, while the ∼2.2 and ∼440 ms phases are assigned to the binding of an internal PQ in a nearby cavity to the vacant QB site and an external PQ traveling to the QB site through channels, respectively, followed by immediate electron transfer. The resultant QB•- is suggested to be in equilibrium with QBH•, which is protonated at the distal oxygen. Upon the second flash, the ∼130 μs and ∼3.3 ms phases are attributed to electron transfer to QBH• and the protonation of QB•- followed by electron transfer, respectively, forming QBH-, which then immediately accepts a proton from D1-H215 at the proximal oxygen to become QBH2. The resultant D1-H215 anion is reprotonated in ∼22 ms via a pathway involving the bicarbonate ligand. The final ∼490 ms phase may reflect the release of PQH2 and its replacement with PQ. The present results highlight the importance of time-resolved infrared spectroscopy in elucidating the mechanism of QB reactions in PSII.
Collapse
Affiliation(s)
- Yuki Kato
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Honami Ito
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
2
|
Capone M, Parisse G, Narzi D, Guidoni L. Unravelling Mn 4Ca cluster vibrations in the S 1, S 2 and S 3 states of the Kok-Joliot cycle of photosystem II. Phys Chem Chem Phys 2024; 26:20598-20609. [PMID: 39037338 PMCID: PMC11290063 DOI: 10.1039/d4cp01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Vibrational spectroscopy serves as a powerful tool for characterizing intermediate states within the Kok-Joliot cycle. In this study, we employ a QM/MM molecular dynamics framework to calculate the room temperature infrared absorption spectra of the S1, S2, and S3 states via the Fourier transform of the dipole time auto-correlation function. To better analyze the computational data and assign spectral peaks, we introduce an approach based on dipole-dipole correlation function of cluster moieties of the reaction center. Our analysis reveals variation in the infrared signature of the Mn4Ca cluster along the Kok-Joliot cycle, attributed to its increasing symmetry and rigidity resulting from the rising oxidation state of the Mn ions. Furthermore, we successfully assign the debated contributions in the frequency range around 600 cm-1. This computational methodology provides valuable insights for deciphering experimental infrared spectra and understanding the water oxidation process in both biological and artificial systems.
Collapse
Affiliation(s)
- Matteo Capone
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Gianluca Parisse
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Daniele Narzi
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Leonardo Guidoni
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| |
Collapse
|
3
|
Gates C, Williams JM, Ananyev G, Dismukes GC. How chloride functions to enable proton conduction in photosynthetic water oxidation: Time-resolved kinetics of intermediates (S-states) in vivo and bromide substitution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148998. [PMID: 37499962 DOI: 10.1016/j.bbabio.2023.148998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Chloride (Cl-) is essential for O2 evolution during photosynthetic water oxidation. Two chlorides near the water-oxidizing complex (WOC) in Photosystem II (PSII) structures from Thermosynechococcus elongatus (and T. vulcanus) have been postulated to transfer protons generated from water oxidation. We monitored four criteria: primary charge separation flash yield (P* → P+QA-), rates of water oxidation steps (S-states), rate of proton evolution, and flash O2 yield oscillations by measuring chlorophyll variable fluorescence (P* quenching), pH-sensitive dye changes, and oximetry. Br-substitution slows and destabilizes cellular growth, resulting from lower light-saturated O2 evolution rate (-20 %) and proton release (-36 % ΔpH gradient). The latter implies less ATP production. In Br- cultures, protonogenic S-state transitions (S2 → S3 → S0') slow with increasing light intensity and during O2/water exchange (S0' → S0 → S1), while the non-protonogenic S1 → S2 transition is kinetically unaffected. As flash rate increases in Cl- cultures, both rate and extent of acidification of the lumen increase, while charge recombination is suppressed relative to Br-. The Cl- advantage in rapid proton escape from the WOC to lumen is attributed to correlated ion-pair movement of H3O+Cl- in dry water channels vs. separated Br- and H+ ion movement through different regions (>200-fold difference in Bronsted acidities). By contrast, at low flash rates a previously unreported reversal occurs that favors Br- cultures for both proton evolution and less PSII charge recombination. In Br- cultures, slower proton transfer rate is attributed to stronger ion-pairing of Br- with AA residues lining the water channels. Both anions charge-neutralize protons and shepherd them to the lumen using dry aqueous channels.
Collapse
Affiliation(s)
- Colin Gates
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Computational Biology and Molecular Biophysics, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Biochemistry, Loyola University Chicago, IL 60660, USA
| | - Jonah M Williams
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA.
| |
Collapse
|
4
|
Greife P, Schönborn M, Capone M, Assunção R, Narzi D, Guidoni L, Dau H. The electron-proton bottleneck of photosynthetic oxygen evolution. Nature 2023; 617:623-628. [PMID: 37138082 PMCID: PMC10191853 DOI: 10.1038/s41586-023-06008-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
Photosynthesis fuels life on Earth by storing solar energy in chemical form. Today's oxygen-rich atmosphere has resulted from the splitting of water at the protein-bound manganese cluster of photosystem II during photosynthesis. Formation of molecular oxygen starts from a state with four accumulated electron holes, the S4 state-which was postulated half a century ago1 and remains largely uncharacterized. Here we resolve this key stage of photosynthetic O2 formation and its crucial mechanistic role. We tracked 230,000 excitation cycles of dark-adapted photosystems with microsecond infrared spectroscopy. Combining these results with computational chemistry reveals that a crucial proton vacancy is initally created through gated sidechain deprotonation. Subsequently, a reactive oxygen radical is formed in a single-electron, multi-proton transfer event. This is the slowest step in photosynthetic O2 formation, with a moderate energetic barrier and marked entropic slowdown. We identify the S4 state as the oxygen-radical state; its formation is followed by fast O-O bonding and O2 release. In conjunction with previous breakthroughs in experimental and computational investigations, a compelling atomistic picture of photosynthetic O2 formation emerges. Our results provide insights into a biological process that is likely to have occurred unchanged for the past three billion years, which we expect to support the knowledge-based design of artificial water-splitting systems.
Collapse
Affiliation(s)
- Paul Greife
- Department of Physics, Freie Universität, Berlin, Germany
| | | | - Matteo Capone
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, Italy
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Daniele Narzi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Leonardo Guidoni
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Holger Dau
- Department of Physics, Freie Universität, Berlin, Germany.
| |
Collapse
|
5
|
Shimada Y, Sugiyama A, Nagao R, Noguchi T. Role of D1-Glu65 in Proton Transfer during Photosynthetic Water Oxidation in Photosystem II. J Phys Chem B 2022; 126:8202-8213. [PMID: 36199221 DOI: 10.1021/acs.jpcb.2c05869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II (PSII) through a light-driven cycle of five intermediates called S states (S0-S4). Although the PSII structures have shown the presence of several channels around the Mn4CaO5 cluster leading to the lumen, the pathways for proton release in the individual S-state transitions remain unidentified. Here, we studied the involvement of the so-called Cl channel in proton transfer during water oxidation by examining the effect of the mutation of D1-Glu65, a key residue in this channel, to Ala using Fourier transform infrared difference and time-resolved infrared spectroscopies together with thermoluminescence and delayed luminescence measurements. It was shown that the structure and the redox property of the catalytic site were little affected by the D1-Glu65Ala mutation. In the S2 → S3 transition, the efficiency was still high and the transition rate was only moderately retarded in the D1-Glu65Ala mutant. In contrast, the S3 → S0 transition was significantly inhibited by this mutation. These results suggest that proton transfer in the S2 → S3 transition occurs through multiple pathways including the Cl channel, whereas this channel likely serves as a single pathway for proton exit in the S3 → S0 transition.
Collapse
Affiliation(s)
- Yuichiro Shimada
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Ayane Sugiyama
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Ryo Nagao
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Okayama700-8530, Japan
| | - Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| |
Collapse
|
6
|
Imaizumi K, Ifuku K. Binding and functions of the two chloride ions in the oxygen-evolving center of photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 153:135-156. [PMID: 35698013 DOI: 10.1007/s11120-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Light-driven water oxidation in photosynthesis occurs at the oxygen-evolving center (OEC) of photosystem II (PSII). Chloride ions (Cl-) are essential for oxygen evolution by PSII, and two Cl- ions have been found to specifically bind near the Mn4CaO5 cluster in the OEC. The retention of these Cl- ions within the OEC is critically supported by some of the membrane-extrinsic subunits of PSII. The functions of these two Cl- ions and the mechanisms of their retention both remain to be fully elucidated. However, intensive studies performed recently have advanced our understanding of the functions of these Cl- ions, and PSII structures from various species have been reported, aiding the interpretation of previous findings regarding Cl- retention by extrinsic subunits. In this review, we summarize the findings to date on the roles of the two Cl- ions bound within the OEC. Additionally, together with a short summary of the functions of PSII membrane-extrinsic subunits, we discuss the mechanisms of Cl- retention by these extrinsic subunits.
Collapse
Affiliation(s)
- Ko Imaizumi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
7
|
Imaizumi K, Nishimura T, Nagao R, Saito K, Nakano T, Ishikita H, Noguchi T, Ifuku K. D139N mutation of PsbP enhances the oxygen-evolving activity of photosystem II through stabilized binding of a chloride ion. PNAS NEXUS 2022; 1:pgac136. [PMID: 36741451 PMCID: PMC9896922 DOI: 10.1093/pnasnexus/pgac136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Photosystem II (PSII) is a multisubunit membrane protein complex that catalyzes light-driven oxidation of water to molecular oxygen. The chloride ion (Cl-) has long been known as an essential cofactor for oxygen evolution by PSII, and two Cl- ions (Cl-1 and Cl-2) have been found to specifically bind near the Mn4CaO5 cluster within the oxygen-evolving center (OEC). However, despite intensive studies on these Cl- ions, little is known about the function of Cl-2, the Cl- ion that is associated with the backbone nitrogens of D1-Asn338, D1-Phe339, and CP43-Glu354. In green plant PSII, the membrane extrinsic subunits-PsbP and PsbQ-are responsible for Cl- retention within the OEC. The Loop 4 region of PsbP, consisting of highly conserved residues Thr135-Gly142, is inserted close to Cl-2, but its importance has not been examined to date. Here, we investigated the importance of PsbP-Loop 4 using spinach PSII membranes reconstituted with spinach PsbP proteins harboring mutations in this region. Mutations in PsbP-Loop 4 had remarkable effects on the rate of oxygen evolution by PSII. Moreover, we found that a specific mutation, PsbP-D139N, significantly enhances the oxygen-evolving activity in the absence of PsbQ, but not significantly in its presence. The D139N mutation increased the Cl- retention ability of PsbP and induced a unique structural change in the OEC, as indicated by light-induced Fourier transform infrared (FTIR) difference spectroscopy and theoretical calculations. Our findings provide insight into the functional significance of Cl-2 in the water-oxidizing reaction of PSII.
Collapse
Affiliation(s)
- Ko Imaizumi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taishi Nishimura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8654 , Japan
| | - Takeshi Nakano
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8654 , Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Mandal M, Saito K, Ishikita H. Release of a Proton and Formation of a Low-Barrier Hydrogen Bond between Tyrosine D and D2-His189 in Photosystem II. ACS PHYSICAL CHEMISTRY AU 2022; 2:423-429. [PMID: 36855688 PMCID: PMC9955220 DOI: 10.1021/acsphyschemau.2c00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII), the second-lowest oxidation state (S1) of the oxygen-evolving Mn4CaO5 cluster is the most stable, as the radical form of the redox-active D2-Tyr160 is considered to be a candidate that accepts an electron from the lowest oxidation state (S0) in the dark. Using quantum mechanical/molecular mechanical calculations, we investigated the redox potential (E m) of TyrD and its H-bond partner, D2-His189. The potential energy profile indicates that the release of a proton from the TyrD...D2-His189 pair leads to the formation of a low-barrier H-bond. The E m depends on the H+ position along the low-barrier H-bond, e.g., 680 mV when the H+ is at the D2-His189 moiety and 800 mV when the H+ is at the TyrD moiety, which can explain why TyrD mediates both the S0 to S1 oxidation and the S2 to S1 reduction.
Collapse
Affiliation(s)
- Manoj Mandal
- Department
of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India
| | - Keisuke Saito
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan,Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan,Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan,. Tel: +81-3-5452-5056. Fax: +81-3-5452-5083
| |
Collapse
|
9
|
Zhu Q, Yang Y, Xiao Y, Han W, Li X, Wang W, Kuang T, Shen JR, Han G. Effects of mutations of D1-R323, D1-N322, D1-D319, D1-H304 on the functioning of photosystem II in Thermosynechococcus vulcanus. PHOTOSYNTHESIS RESEARCH 2022; 152:193-206. [PMID: 35503495 DOI: 10.1007/s11120-022-00920-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) has a number of hydrogen-bonding networks connecting the manganese cluster with the lumenal bulk solution. The structure of PSII from Thermosynechococcus vulcanus (T. vulcanus) showed that D1-R323, D1-N322, D1-D319 and D1-H304 are involved in one of these hydrogen-bonding networks located in the interfaces between the D1, CP43 and PsbV subunits. In order to investigate the functions of these residues in PSII, we generated seven site-directed mutants D1-R323A, D1-R323E, D1-N322R, D1-D319L, D1-D319R, D1-D319Y and D1-H304D of T. vulcanus and examined the effects of these mutations on the growth and functions of the oxygen-evolving complex. The photoautotrophic growth rates of these mutants were similar to that of the wild type, whereas the oxygen-evolving activities of the mutant cells were decreased differently to 63-91% of that of the wild type at pH 6.5. The mutant cells showed a higher relative activity at higher pH region than the wild type cells, suggesting that higher pH facilitated proton egress in the mutants. In addition, oxygen evolution of thylakoid membranes isolated from these mutants showed an apparent decrease compared to that of the cells. This is due to the loss of PsbU during purification of the thylakoid membranes. Moreover, PsbV was also lost in the PSII core complexes purified from the mutants. Taken together, D1-R323, D1-N322, D1-D319 and D1-H304 are vital for the optimal function of oxygen evolution and functional binding of extrinsic proteins to PSII core, and may be involved in the proton egress pathway mediated by YZ.
Collapse
Affiliation(s)
- Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, No.1 Beichen West Rd., Beijing, 100101, China.
- Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 3-1-1, Okayama, 700-8530, Japan.
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
10
|
Time-resolved infrared absorption spectroscopy applied to photoinduced reactions: how and why. Photochem Photobiol Sci 2022; 21:557-584. [DOI: 10.1007/s43630-022-00180-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
11
|
Debus RJ. Alteration of the O 2-Producing Mn 4Ca Cluster in Photosystem II by the Mutation of a Metal Ligand. Biochemistry 2021; 60:3841-3855. [PMID: 34898175 DOI: 10.1021/acs.biochem.1c00504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The O2-evolving Mn4Ca cluster in photosystem II (PSII) is arranged as a distorted Mn3Ca cube that is linked to a fourth Mn ion (denoted as Mn4) by two oxo bridges. The Mn4 and Ca ions are bridged by residue D1-D170. This is also the only residue known to participate in the high-affinity Mn(II) site that participates in the light-driven assembly of the Mn4Ca cluster. In this study, we use Fourier transform infrared difference spectroscopy to characterize the impact of the D1-D170E mutation. On the basis of analyses of carboxylate and carbonyl stretching modes and the O-H stretching modes of hydrogen-bonded water molecules, we show that this mutation alters the extensive network of hydrogen bonds that surrounds the Mn4Ca cluster in the same manner as that of many other mutations. It also alters the equilibrium between conformers of the Mn4Ca cluster in the dark-stable S1 state so that a high-spin form of the S2 state is produced during the S1-to-S2 transition instead of the low-spin form that gives rise to the S2 state multiline electron paramagnetic resonance signal. The mutation may also change the coordination mode of the carboxylate group at position 170 to unidentate ligation of Mn4. This is the first mutation of a metal ligand in PSII that substantially impacts the spectroscopic signatures of the Mn4Ca cluster without substantially eliminating O2 evolution. The results have significant implications for our understanding of the roles of alternate active/inactive conformers of the Mn4Ca cluster in the mechanism of O2 formation.
Collapse
Affiliation(s)
- Richard J Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
12
|
de Lichtenberg C, Kim CJ, Chernev P, Debus RJ, Messinger J. The exchange of the fast substrate water in the S 2 state of photosystem II is limited by diffusion of bulk water through channels - implications for the water oxidation mechanism. Chem Sci 2021; 12:12763-12775. [PMID: 34703563 PMCID: PMC8494045 DOI: 10.1039/d1sc02265b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/31/2021] [Indexed: 12/02/2022] Open
Abstract
The molecular oxygen we breathe is produced from water-derived oxygen species bound to the Mn4CaO5 cluster in photosystem II (PSII). Present research points to the central oxo-bridge O5 as the 'slow exchanging substrate water (Ws)', while, in the S2 state, the terminal water ligands W2 and W3 are both discussed as the 'fast exchanging substrate water (Wf)'. A critical point for the assignment of Wf is whether or not its exchange with bulk water is limited by barriers in the channels leading to the Mn4CaO5 cluster. In this study, we measured the rates of H2 16O/H2 18O substrate water exchange in the S2 and S3 states of PSII core complexes from wild-type (WT) Synechocystis sp. PCC 6803, and from two mutants, D1-D61A and D1-E189Q, that are expected to alter water access via the Cl1/O4 channels and the O1 channel, respectively. We found that the exchange rates of Wf and Ws were unaffected by the E189Q mutation (O1 channel), but strongly perturbed by the D61A mutation (Cl1/O4 channel). It is concluded that all channels have restrictions limiting the isotopic equilibration of the inner water pool near the Mn4CaO5 cluster, and that D61 participates in one such barrier. In the D61A mutant this barrier is lowered so that Wf exchange occurs more rapidly. This finding removes the main argument against Ca-bound W3 as fast substrate water in the S2 state, namely the indifference of the rate of Wf exchange towards Ca/Sr substitution.
Collapse
Affiliation(s)
- Casper de Lichtenberg
- Department of Chemistry, Umeå University Linnaeus väg 6 (KBC huset), SE-901 87 Umeå Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University POB 523 SE-75120 Uppsala Sweden
| | - Christopher J Kim
- Department of Biochemistry, University of California Riverside California 92521 USA
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University POB 523 SE-75120 Uppsala Sweden
| | - Richard J Debus
- Department of Biochemistry, University of California Riverside California 92521 USA
| | - Johannes Messinger
- Department of Chemistry, Umeå University Linnaeus väg 6 (KBC huset), SE-901 87 Umeå Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University POB 523 SE-75120 Uppsala Sweden
| |
Collapse
|
13
|
Okamoto Y, Shimada Y, Nagao R, Noguchi T. Proton and Water Transfer Pathways in the S 2 → S 3 Transition of the Water-Oxidizing Complex in Photosystem II: Time-Resolved Infrared Analysis of the Effects of D1-N298A Mutation and NO 3- Substitution. J Phys Chem B 2021; 125:6864-6873. [PMID: 34152151 DOI: 10.1021/acs.jpcb.1c03386] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Photosynthetic water oxidation is performed through a light-driven cycle of five intermediates (S0-S4 states) in photosystem II (PSII). The S2 → S3 transition, which involves concerted water and proton transfer, is a key process for understanding the water oxidation mechanism. Here, to identify the water and proton transfer pathways during the S2 → S3 transition, we examined the effects of D1-N298A mutation and NO3- substitution for Cl-, which perturbed the O1 and Cl channels, respectively, on the S2 → S3 kinetics using time-resolved infrared spectroscopy. The S2 → S3 transition was retarded both upon NO3- substitution and upon D1-N298A mutation, whereas it was unaffected by further NO3- substitution in N298A PSII. The H/D kinetic isotope effect in N298A PSII was relatively small, revealing that water transfer is a rate-limiting step in this mutant. From these results, it was suggested that during the S2 → S3 transition, water delivery and proton release occur through the O1 and Cl channels, respectively.
Collapse
Affiliation(s)
- Yasutada Okamoto
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuichiro Shimada
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Kaur D, Zhang Y, Reiss KM, Mandal M, Brudvig GW, Batista VS, Gunner MR. Proton exit pathways surrounding the oxygen evolving complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148446. [PMID: 33964279 DOI: 10.1016/j.bbabio.2021.148446] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022]
Abstract
Photosystem II allows water to be the primary electron source for the photosynthetic electron transfer chain. Water is oxidized to dioxygen at the Oxygen Evolving Complex (OEC), a Mn4CaO5 inorganic core embedded on the lumenal side of PSII. Water-filled channels surrounding the OEC must bring in substrate water molecules, remove the product protons to the lumen, and may transport the product oxygen. Three water-filled channels, denoted large, narrow, and broad, extend from the OEC towards the aqueous surface more than 15 Å away. However, the role of each pathway in the transport in and out of the OEC is yet to be established. Here, we combine Molecular Dynamics (MD), Multi Conformation Continuum Electrostatics (MCCE) and Network Analysis to compare and contrast the three potential proton transfer paths. Hydrogen bond network analysis shows that near the OEC the waters are highly interconnected with similar free energy for hydronium at all locations. The paths diverge as they move towards the lumen. The water chain in the broad channel is better connected than in the narrow and large channels, where disruptions in the network are observed approximately 10 Å from the OEC. In addition, the barrier for hydronium translocation is lower in the broad channel. Thus, a proton released from any location on the OEC can access all paths, but the likely exit to the lumen passes through PsbO via the broad channel.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Krystle M Reiss
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Manoj Mandal
- Department of Physics, City College of New York, NY 10031, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States.
| |
Collapse
|
15
|
Li H, Nakajima Y, Nomura T, Sugahara M, Yonekura S, Chan SK, Nakane T, Yamane T, Umena Y, Suzuki M, Masuda T, Motomura T, Naitow H, Matsuura Y, Kimura T, Tono K, Owada S, Joti Y, Tanaka R, Nango E, Akita F, Kubo M, Iwata S, Shen JR, Suga M. Capturing structural changes of the S 1 to S 2 transition of photosystem II using time-resolved serial femtosecond crystallography. IUCRJ 2021; 8:431-443. [PMID: 33953929 PMCID: PMC8086164 DOI: 10.1107/s2052252521002177] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/24/2021] [Indexed: 05/21/2023]
Abstract
Photosystem II (PSII) catalyzes light-induced water oxidation through an S i -state cycle, leading to the generation of di-oxygen, protons and electrons. Pump-probe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S1-to-S2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S1-to-S2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed.
Collapse
Affiliation(s)
- Hongjie Li
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Takashi Nomura
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shinichiro Yonekura
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Siu Kit Chan
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Takanori Nakane
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Yamane
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Yasufumi Umena
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Taiki Motomura
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshinori Matsuura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsunari Kimura
- Department of Chemistry, Graduate School of Science, Kobe University, -1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan
| |
Collapse
|
16
|
Mandal M, Saito K, Ishikita H. Two Distinct Oxygen-Radical Conformations in the X-ray Free Electron Laser Structures of Photosystem II. J Phys Chem Lett 2021; 12:4032-4037. [PMID: 33881870 DOI: 10.1021/acs.jpclett.1c00814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the existence of two distinct oxygen-radical-containing Mn4CaO5/6 conformations with short O···O bonds in the crystal structures of the oxygen-evolving enzyme photosystem II (PSII), obtained using an X-ray free electron laser (XFEL). A short O···O distance of <2.3 Å between the O4 site of the Mn4CaO5 complex and the adjacent water molecule (W539) in the proton-conducting O4-water chain was observed in the second flash-induced (2F) XFEL structure (2F-XFEL), which may correspond to S3. By use of a quantum mechanical/molecular mechanical approach, the OH• formation at W539 and the short O4···OW539 distance (<2.3 Å) were reproduced in S2 and S3 with reduced Mn1(III), which lacks the additional sixth water molecule O6. As the O•- formation at O6 and the short O5···O6 distance (1.9 Å) have been reported in another 2F-XFEL structure with reduced Mn4(III), two distinct oxygen-radical conformations exist in the 2F-XFEL crystals.
Collapse
Affiliation(s)
- Manoj Mandal
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
17
|
Ghosh I, Banerjee G, Reiss K, Kim CJ, Debus RJ, Batista VS, Brudvig GW. D1-S169A substitution of photosystem II reveals a novel S 2-state structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148301. [PMID: 32860756 DOI: 10.1016/j.bbabio.2020.148301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
In photosystem II (PSII), photosynthetic water oxidation occurs at the O2-evolving complex (OEC), a tetramanganese-calcium cluster that cycles through light-induced redox intermediates (S0-S4) to produce oxygen from two substrate water molecules. The OEC is surrounded by a hydrogen-bonded network of amino-acid residues that plays a crucial role in proton transfer and substrate water delivery. Previously, we found that D1-S169 was crucial for water oxidation and its mutation to alanine perturbed the hydrogen-bonding network. In this study, we demonstrate that the activation energy for the S2 to S1 transition of D1-S169A PSII is higher than wild-type PSII with a ~1.7-2.7× slower rate of charge recombination with QA- relative to wild-type PSII. Arrhenius analysis of the decay kinetics shows an Ea of 5.87 ± 1.15 kcal mol-1 for decay back to the S1 state, compared to 0.80 ± 0.13 kcal mol-1 for the wild-type S2 state. In addition, we find that ammonia does not affect the S2-state EPR signal, indicating that ammonia does not bind to the Mn cluster in D1-S169A PSII. Finally, a QM/MM analysis indicates that an additional water molecule binds to the Mn4 ion in place of an oxo ligand O5 in the S2 state of D1-S169A PSII. The altered S2 state of D1-S169A PSII provides insight into the S2➔S3 state transition.
Collapse
Affiliation(s)
- Ipsita Ghosh
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Gourab Banerjee
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Christopher J Kim
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA.
| |
Collapse
|
18
|
de Lichtenberg C, Avramov AP, Zhang M, Mamedov F, Burnap RL, Messinger J. The D1-V185N mutation alters substrate water exchange by stabilizing alternative structures of the Mn 4Ca-cluster in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148319. [PMID: 32979346 DOI: 10.1016/j.bbabio.2020.148319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 11/30/2022]
Abstract
In photosynthesis, the oxygen-evolving complex (OEC) of the pigment-protein complex photosystem II (PSII) orchestrates the oxidation of water. Introduction of the V185N mutation into the D1 protein was previously reported to drastically slow O2-release and strongly perturb the water network surrounding the Mn4Ca cluster. Employing time-resolved membrane inlet mass spectrometry, we measured here the H218O/H216O-exchange kinetics of the fast (Wf) and slow (Ws) exchanging substrate waters bound in the S1, S2 and S3 states to the Mn4Ca cluster of PSII core complexes isolated from wild type and D1-V185N strains of Synechocystis sp. PCC 6803. We found that the rate of exchange for Ws was increased in the S1 and S2 states, while both Wf and Ws exchange rates were decreased in the S3 state. Additionally, we used EPR spectroscopy to characterize the Mn4Ca cluster and its interaction with the redox active D1-Tyr161 (YZ). In the S2 state, we observed a greatly diminished multiline signal in the V185N-PSII that could be recovered by addition of ammonia. The split signal in the S1 state was not affected, while the split signal in the S3 state was absent in the D1-V185N mutant. These findings are rationalized by the proposal that the N185 residue stabilizes the binding of an additional water-derived ligand at the Mn1 site of the Mn4Ca cluster via hydrogen bonding. Implications for the sites of substrate water binding are discussed.
Collapse
Affiliation(s)
- Casper de Lichtenberg
- Department of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), SE-901 87 Umeå, Sweden; Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, POB 523, SE-75120 Uppsala, Sweden
| | - Anton P Avramov
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, United States
| | - Minquan Zhang
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, United States
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, POB 523, SE-75120 Uppsala, Sweden
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, United States
| | - Johannes Messinger
- Department of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), SE-901 87 Umeå, Sweden; Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, POB 523, SE-75120 Uppsala, Sweden.
| |
Collapse
|
19
|
Kim CJ, Debus RJ. Roles of D1-Glu189 and D1-Glu329 in O2 Formation by the Water-Splitting Mn4Ca Cluster in Photosystem II. Biochemistry 2020; 59:3902-3917. [DOI: 10.1021/acs.biochem.0c00541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher J. Kim
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
20
|
Yamamoto M, Nakamura S, Noguchi T. Protonation structure of the photosynthetic water oxidizing complex in the S0 state as revealed by normal mode analysis using quantum mechanics/molecular mechanics calculations. Phys Chem Chem Phys 2020; 22:24213-24225. [DOI: 10.1039/d0cp04079g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protonation structure of the first intermediate of the water oxidizing complex was determined by QM/MM calculations of molecular vibrations.
Collapse
Affiliation(s)
- Masao Yamamoto
- Division of Material Science
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Shin Nakamura
- Division of Material Science
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Takumi Noguchi
- Division of Material Science
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| |
Collapse
|