1
|
Yuan X, Galán-Mascarós JR. Sulfur-Bridged Iron and Molybdenum Catalysts for Electrocatalytic Ammonia Synthesis. CHEMSUSCHEM 2025; 18:e202402361. [PMID: 39680305 DOI: 10.1002/cssc.202402361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
Carbon zero electrocatalytic nitrogen reduction reaction (NRR), converting N2 to NH3 under ambient temperature and pressure, offers a sustainable alternative to the energy-intensive Haber-Bosch process. Nevertheless, NRR still faces major challenges due to direct dissociation of the strong N≡N triple bond, poor selectivity, as well as other issues related to the inadequate adsorption, activation and protonation of N2. In nature's nitrogen fixation, microorganisms are able to convert N2 to ammonia at ambient temperature and pressure, and in aqueous environment, thanks to the nitrogenase enzymes. The core NRR performance is achieved with sulfur-rich Fe transition metal clusters as active site cofactors to capture and reduce N2, with optimum performance found for Fe-Mo clusters. Because of this reason, artificial analogs in Fe-Mo coordination chemistry have been explored. However, the studies of sulfur coordinated Fe, Mo catalysts for electrocatalytic ammonia synthesis are scarce. In this review, the recent progress of Fe-Mo sulfur-bridged catalysts (including sulfur-coordinated single-site catalysts in carbon frameworks and MoS2-based catalysts) and their activities for the ammonia synthesis from nitrate reduction reaction (NO3 -RR) and nitrogen reduction reaction (NRR) are summarized. Further existing challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Xiaojiao Yuan
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007, Spain
| | - J R Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007, Spain
- ICREA, Passeig Lluis Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
2
|
Bartlett PN, de Groot CHK, Greenacre VK, Huang R, Noori YJ, Reid G, Thomas S. Molecular precursors for the electrodeposition of 2D-layered metal chalcogenides. Nat Rev Chem 2025; 9:88-101. [PMID: 39775527 DOI: 10.1038/s41570-024-00671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 01/11/2025]
Abstract
Two-dimensional transition metal dichalcogenides (TMDCs) are highly anisotropic, layered semiconductors, with the general formula ME2 (M = metal, E = sulfur, selenium or tellurium). Much current research in this field focusses on TMDCs for catalysis and energy applications; they are also attracting great interest for next-generation transistor and optoelectronic devices. The latter high-tech applications place stringent requirements on the stoichiometry, crystallinity, morphology and electronic properties of monolayer and few-layer materials. As a solution-based process, wherein the material grows specifically on the electrode surface, electrodeposition offers great promise as a readily scalable, area-selective growth process. This Review explores the state-of-the-art for TMDC electrodeposition, highlighting how the choice of precursor (or precursors), solvent and electrode designs, with novel 'device-ready' electrode geometries, influence their morphologies and properties, thus enabling the direct growth of ultrathin, highly anisotropic 2D TMDCs and much scope for future advances.
Collapse
Affiliation(s)
| | - C H Kees de Groot
- School of Electronics and Computer Science, University of Southampton, Southampton, UK
| | | | - Ruomeng Huang
- School of Electronics and Computer Science, University of Southampton, Southampton, UK
| | - Yasir J Noori
- School of Electronics and Computer Science, University of Southampton, Southampton, UK
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton, UK.
| | - Shibin Thomas
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Kutagulla S, Le NH, Caldino Bohn IT, Stacy BJ, Favela CS, Slack JJ, Baker AM, Kim H, Shin HS, Korgel BA, Akinwande D. Comparative Studies of Atomically Thin Proton Conductive Films to Reduce Crossover in Hydrogen Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59358-59369. [PMID: 38103256 DOI: 10.1021/acsami.3c12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Hydrogen fuel cells based on proton exchange membrane fuel cell (PEMFC) technology are promising as a source of clean energy to power a decarbonized future. However, PEMFCs are limited by a number of major inefficiencies; one of the most significant is hydrogen crossover. In this work, we comprehensively study the effects of two-dimensional (2D) materials applied to the anode side of the membrane as H2 barrier coatings on Nafion to reduce crossover effects on hydrogen fuel cells, while studying adverse effects on conductivity and catalyst performance in the beginning of life testing. The barrier layers studied include graphene, hexagonal boron nitride (hBN), amorphous boron nitride (aBN), and varying thicknesses of molybdenum disulfide (MoS2), all chosen due to their expected stability in a fuel cell environment. Crossover mitigation in the materials studied ranges from 4.4% (1 nm MoS2) to 46.1% (graphene) as compared to Nafion 211. Effects on proton conductivity are also studied, suggesting high areal proton transport in materials previously thought to be effectively nonconductive, such as 2 nm MoS2 and amorphous boron nitride under the conditions studied. The results indicate that a number of 2D materials are able to improve crossover effects, with those coated with 8 nm MoS2 and 1 L graphene able to achieve greater crossover reduction while minimizing conductivity penalty.
Collapse
Affiliation(s)
- Shanmukh Kutagulla
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Nam Hoang Le
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Isabel Terry Caldino Bohn
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Benjamin J Stacy
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Christopher S Favela
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| | - John J Slack
- Nikola Corporation, Phoenix, Arizona 85040-8803, United States
| | - Andrew M Baker
- Nikola Corporation, Phoenix, Arizona 85040-8803, United States
| | - Hyeongjoon Kim
- Department of Chemistry and Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science & Technology, Ulsan 44919, Republic of Korea
| | - Hyeon Suk Shin
- Department of Chemistry and Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science & Technology, Ulsan 44919, Republic of Korea
| | - Brian A Korgel
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Deji Akinwande
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|