1
|
Carvalho JP, Goodwin DL, Wili N, Nielsen AB, Nielsen NC. Optimal control design strategies for pulsed dynamic nuclear polarization. J Chem Phys 2025; 162:054111. [PMID: 39902705 DOI: 10.1063/5.0244723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
We present optimal control methods for the optimization of periodic pulsed dynamic nuclear polarization (DNP) sequences. Specifically, we address the challenge of the optimization of a basic and repeated pulse sequence element which, apart from being easily adaptable to spin systems with different coupling interaction sizes, also proves beneficial in terms of performance. It is demonstrated that matrix power and matrix logarithm functions combined with an auxiliary matrix formalism can be used to derive expressions for gradient ascent pulse engineering (GRAPE) optimization. We illustrate how different implementations provide effective and intuitive control of DNP experiments by tailoring the effective Hamiltonian governing polarization transfer and, in this manner, addressing some of the limitations of prevailing optimal control based pulse design strategies.
Collapse
Affiliation(s)
- José P Carvalho
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - David L Goodwin
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Nino Wili
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Anders Bodholt Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Pang Z, Sheberstov K, Rodin BA, Lumsden J, Banerjee U, Abergel D, Mentink-Vigier F, Bodenhausen G, Tan KO. Hypershifted spin spectroscopy with dynamic nuclear polarization at 1.4 K. SCIENCE ADVANCES 2024; 10:eadr7160. [PMID: 39661685 PMCID: PMC11633758 DOI: 10.1126/sciadv.adr7160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Dynamic nuclear polarization (DNP) enhances nuclear magnetic resonance (NMR) sensitivity by transferring polarization from unpaired electrons to nuclei, but nearby nuclear spins are difficult to detect or "hidden" due to strong electron-nuclear couplings that hypershift their NMR resonances. Here, we detect these hypershifted spins in a frozen glycerol-water mixture doped with TEMPOL at ~1.4 K using spin diffusion enhanced saturation transfer (SPIDEST), which indirectly reveals their spectrum. Additionally, we directly observe 1H NMR lines spanning 10 MHz. The spectrum is confirmed by simulations and density functional theory (DFT) calculations, which verify that the signals originate from intramolecular protons on TEMPOL. Using two-dimensional NMR, we demonstrate polarization transfer from hypershifted to bulk nuclei across a spin diffusion barrier. This methodology provides new insights into the structures of radicals and could aid in designing more efficient DNP polarizing agents. It also complements information on hyperfine interaction accessible by electron paramagnetic resonance (EPR).
Collapse
Affiliation(s)
- Zhenfeng Pang
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Kirill Sheberstov
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Bogdan A. Rodin
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Jake Lumsden
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Utsab Banerjee
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Daniel Abergel
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frédéric Mentink-Vigier
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Geoffrey Bodenhausen
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Kong Ooi Tan
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
3
|
Palani RS, Mardini M, Quan Y, Ouyang Y, Mishra A, Griffin RG. Dynamic Nuclear Polarization with P1 Centers in Diamond. J Phys Chem Lett 2024; 15:11504-11509. [PMID: 39514770 PMCID: PMC12065642 DOI: 10.1021/acs.jpclett.4c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Substitutional nitrogen impurities within the diamond lattice, known as P1 centers, have unpaired electrons that can mediate microwave driven dynamic nuclear polarization (DNP). In this paper we explore DNP of the bulk 13C spins in micrometer-sized P1 diamond particles and demonstrate a 550-fold DNP enhancement of the bulk 13C spins at room temperature in a 9 T magnetic field or 250 GHz for g ≈ 2 electrons. We study the DNP mechanisms, exploring their dependence on sample spinning frequency and microwave irradiation frequency using both continuous wave and frequency swept microwave irradiation, and discuss the results alongside recent DNP studies in the literature. Even with a modest microwave irradiation power of 160 mW from our frequency swept solid-state microwave source, we achieve a significant 13C signal enhancement, ε = 270 at room temperature. The enhancements were found to increase with the magic angle spinning (MAS) frequency, ωr/2π, and the results provide mechanistic insights into how different electron populations contribute to the observed DNP efficiency. These findings are inherently interesting and of practical importance in view of the recently reported diamond rotors fabricated from P1 high-pressure, high-temperature (HPHT) diamond.
Collapse
Affiliation(s)
- Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifan Quan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifu Ouyang
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Mishra
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Zhao Y, El Mkami H, Hunter RI, Casano G, Ouari O, Smith GM. Large cross-effect dynamic nuclear polarisation enhancements with kilowatt inverting chirped pulses at 94 GHz. Commun Chem 2023; 6:171. [PMID: 37607991 PMCID: PMC10444895 DOI: 10.1038/s42004-023-00963-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Dynamic nuclear polarisation (DNP) is a process that transfers electron spin polarisation to nuclei by applying resonant microwave radiation, and has been widely used to improve the sensitivity of nuclear magnetic resonance (NMR). Here we demonstrate new levels of performance for static cross-effect proton DNP using high peak power chirped inversion pulses at 94 GHz to create a strong polarisation gradient across the inhomogeneously broadened line of the mono-radical 4-amino TEMPO. Enhancements of up to 340 are achieved at an average power of a few hundred mW, with fast build-up times (3 s). Experiments are performed using a home-built wideband kW pulsed electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz, integrated with an NMR detection system. Simultaneous DNP and EPR characterisation of other mono-radicals and biradicals, as a function of temperature, leads to additional insights into limiting relaxation mechanisms and give further motivation for the development of wideband pulsed amplifiers for DNP at higher frequencies.
Collapse
Affiliation(s)
- Yujie Zhao
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland
| | - Hassane El Mkami
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland
| | - Robert I Hunter
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland
| | - Gilles Casano
- Aix Marseille University, CNRS, ICR, UMR 7273, F-13013, Marseille, France
| | - Olivier Ouari
- Aix Marseille University, CNRS, ICR, UMR 7273, F-13013, Marseille, France
| | - Graham M Smith
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland.
| |
Collapse
|
5
|
Golota NC, Fredin ZP, Banks DP, Preiss D, Bahri S, Patil P, Langford WK, Blackburn CL, Strand E, Michael B, Dastrup B, Nelson KA, Gershenfeld N, Griffin R. Diamond rotors. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107475. [PMID: 37224586 PMCID: PMC10504678 DOI: 10.1016/j.jmr.2023.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
The resolution of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra remains bounded by the spinning frequency, which is limited by the material strength of MAS rotors. Since diamond is capable of withstanding 1.5-2.5x greater MAS frequencies, compared to state-of-the art zirconia, we fabricated rotors from single crystal diamond. When combined with bearings optimized for spinning with helium gas, diamond rotors could achieve the highest MAS frequencies to date. Furthermore, the excellent microwave transmission properties and thermal conductivity of diamond could improve sensitivity enhancements in dynamic nuclear polarization (DNP) experiments. The fabrication protocol we report involves novel laser micromachining and produced rotors that presently spin at ωr/2π = 111.000 ± 0.004 kHz, with stable spinning up to 124 kHz, using N2 gas as the driving fluid. We present the first proton-detected 13C/15N MAS spectra recorded using diamond rotors, a critical step towards studying currently inaccessible ex-vivo protein samples with MAS NMR. Previously, the high aspect ratio of MAS rotors (∼10:1) precluded fabrication of MAS rotors from diamond.
Collapse
Affiliation(s)
- Natalie C Golota
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zachary P Fredin
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel P Banks
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Preiss
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Salima Bahri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Prashant Patil
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William K Langford
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Camron L Blackburn
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erik Strand
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian Michael
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Blake Dastrup
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Keith A Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil Gershenfeld
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Quan Y, Subramanya MVH, Ouyang Y, Mardini M, Dubroca T, Hill S, Griffin RG. Coherent Dynamic Nuclear Polarization using Chirped Pulses. J Phys Chem Lett 2023; 14:4748-4753. [PMID: 37184391 DOI: 10.1021/acs.jpclett.3c00726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This paper presents a study of coherent dynamic nuclear polarization (DNP) using frequency swept pulses at 94 GHz which optimize the polarization transfer efficiency. Accordingly, an enhancement ε ∼ 496 was observed using 10 mM trityl-OX063 as the polarizing agent in a standard 6:3:1 d8-glycerol/D2O/H2O glassing matrix at 70 K. At present, this is the largest DNP enhancement reported at this microwave frequency and temperature. Furthermore, the frequency swept pulses enhance the nuclear magnetic resonance (NMR) signal and reduce the recycle delay, accelerating the NMR signal acquisition.
Collapse
Affiliation(s)
- Yifan Quan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Manoj V H Subramanya
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32310, United States
| | - Yifu Ouyang
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Stephen Hill
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32310, United States
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Wili N, Ardenkjær-Larsen J, Jeschke G. Reverse dynamic nuclear polarisation for indirect detection of nuclear spins close to unpaired electrons. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:161-168. [PMID: 37904869 PMCID: PMC10539835 DOI: 10.5194/mr-3-161-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/01/2023]
Abstract
Polarisation transfer schemes and indirect detection are central to magnetic resonance. Using the trityl radical OX063 and a pulse electron paramagnetic resonance spectrometer operating in the Q-band (35 GHz, 1.2 T), we show here that it is possible to use pulsed dynamic nuclear polarisation (DNP) to transfer polarisation from electrons to protons and back. The latter is achieved by first saturating the electrons and then simply using a reverse DNP step. A variable mixing time between DNP and reverse DNP allows us to investigate the decay of polarisation on protons in the vicinity of the electrons. We qualitatively investigate the influence of solvent deuteration, temperature, and electron concentration. We expect reverse DNP to be useful in the investigation of nuclear spin diffusion and envisage its use in electron-nuclear double-resonance (ENDOR) experiments.
Collapse
Affiliation(s)
- Nino Wili
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan Henrik Ardenkjær-Larsen
- Department of Health Technology, Center for Hyperpolarization in Magnetic Resonance, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Wili N, Nielsen AB, Völker LA, Schreder L, Nielsen NC, Jeschke G, Tan KO. Designing broadband pulsed dynamic nuclear polarization sequences in static solids. SCIENCE ADVANCES 2022; 8:eabq0536. [PMID: 35857520 PMCID: PMC9286509 DOI: 10.1126/sciadv.abq0536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 05/28/2023]
Abstract
Dynamic nuclear polarization (DNP) is a nuclear magnetic resonance (NMR) hyperpolarization technique that mediates polarization transfer from unpaired electrons with large thermal polarization to NMR-active nuclei via microwave (mw) irradiation. The ability to generate arbitrarily shaped mw pulses using arbitrary waveform generators allows for remarkable improvement of the robustness and versatility of DNP. We present here novel design principles based on single-spin vector effective Hamiltonian theory to develop new broadband DNP pulse sequences, namely, an adiabatic version of XiX (X-inverse X)-DNP and a broadband excitation by amplitude modulation (BEAM)-DNP experiment. We demonstrate that the adiabatic BEAM-DNP pulse sequence may achieve a 1H enhancement factor of ∼360, which is better than ramped-amplitude NOVEL (nuclear spin orientation via electron spin locking) at ∼0.35 T and 80 K in static solids doped with trityl radicals. In addition, the bandwidth of the BEAM-DNP experiments (~50 MHz) is about three times the 1H Larmor frequency. The generality of our theoretical approach will be helpful in the development of new pulsed DNP sequences.
Collapse
Affiliation(s)
- Nino Wili
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Anders Bodholt Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Laura Alicia Völker
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Lukas Schreder
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Niels Chr. Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Kong Ooi Tan
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
9
|
Quan Y, Steiner J, Ouyang Y, Tan KO, Wenckebach WT, Hautle P, Griffin RG. Integrated, Stretched, and Adiabatic Solid Effects. J Phys Chem Lett 2022; 13:5751-5757. [PMID: 35714050 PMCID: PMC9938721 DOI: 10.1021/acs.jpclett.2c01147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper presents a theory describing the dynamic nuclear polarization (DNP) process associated with an arbitrary frequency swept microwave pulse. The theory is utilized to explain the integrated solid effect (ISE) as well as the newly discovered stretched solid effect (SSE) and adiabatic solid effect (ASE). It is verified with experiments performed at 9.4 GHz (0.34 T) on single crystals of naphthalene doped with pentacene-d14. It is shown that the SSE and ASE can be more efficient than the ISE. Furthermore, the theory predicts that the efficiency of the SSE improves at high magnetic fields, where the EPR line width is small compared to the nuclear Larmor frequency. In addition, we show that the ISE, SSE, and ASE are based on similar physical principles and we suggest definitions to distinguish among them.
Collapse
Affiliation(s)
- Yifan Quan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jakob Steiner
- Paul Scherrer Institute (PCI), 5232 Villigen, Switzerland
| | - Yifu Ouyang
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kong Ooi Tan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Currently at Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - W Thomas Wenckebach
- Paul Scherrer Institute (PCI), 5232 Villigen, Switzerland
- National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32310, United States
| | - Patrick Hautle
- Paul Scherrer Institute (PCI), 5232 Villigen, Switzerland
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Tan KO, Griffin RG. Observation of a Four-Spin Solid Effect. J Chem Phys 2022; 156:174201. [PMID: 35525661 PMCID: PMC9068241 DOI: 10.1063/5.0091663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The two-spin solid effect (2SSE) is one of the established continuous wave dynamic nuclear polarization mechanisms that enables enhancement of nuclear magnetic resonance signals. It functions via a state-mixing mechanism that mediates the excitation of forbidden transitions in an electron–nuclear spin system. Specifically, microwave irradiation at frequencies ωμw ∼ ω0S ± ω0I, where ω0S and ω0I are electron and nuclear Larmor frequencies, respectively, yields enhanced nuclear spin polarization. Following the recent rediscovery of the three-spin solid effect (3SSE) [Tan et al., Sci. Adv. 5, eaax2743 (2019)], where the matching condition is given by ωμw = ω0S ± 2ω0I, we report here the first direct observation of the four-spin solid effect (4SSE) at ωμw = ω0S ± 3ω0I. The forbidden double- and quadruple-quantum transitions were observed in samples containing trityl radicals dispersed in a glycerol–water mixture at 0.35 T/15 MHz/9.8 GHz and 80 K. We present a derivation of the 4SSE effective Hamiltonian, matching conditions, and transition probabilities. Finally, we show that the experimental observations agree with the results from numerical simulations and analytical theory.
Collapse
Affiliation(s)
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, United States of America
| |
Collapse
|
11
|
Shimon D, Kaminker I. A transition from solid effect to indirect cross effect with broadband microwave irradiation. Phys Chem Chem Phys 2022; 24:7311-7322. [PMID: 35262101 DOI: 10.1039/d1cp05096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dynamic nuclear polarization (DNP) at high magnetic fields has become a prominent technique for signal enhancement in nuclear magnetic resonance (NMR). In static samples, the highest DNP enhancement is usually observed for high radical concentrations in the range of 15-40 mM. Under these conditions, the dominant DNP mechanism for broad-line radicals is the electron-electron spectral-diffusion-based indirect cross effect (iCE). To further increase the DNP performance, broadband microwave irradiation is often applied. Until now, the theory of iCE was not rigorously combined with broadband microwave irradiation. This paper fills this gap by extending the iCE theory to explicitly include broadband irradiation. We demonstrate that our theory allows for quantitative fitting of the DNP spectra lineshapes using four different datasets acquired at 3.4 T and 7 T. We find that the DNP mechanism changes with an increase in the excitation bandwidth. While with narrowband continuous-wave irradiation the DNP mechanism is a combination of the solid effect (SE) and iCE, it shifts toward iCE with increasing excitation bandwidth until, at high bandwidth, the iCE completely dominates the DNP spectrum - this effect was not accounted for previously.
Collapse
Affiliation(s)
- D Shimon
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - I Kaminker
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Redrouthu VS, Mathies G. Efficient Pulsed Dynamic Nuclear Polarization with the X-Inverse-X Sequence. J Am Chem Soc 2022; 144:1513-1516. [PMID: 35076217 DOI: 10.1021/jacs.1c09900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pulsed dynamic nuclear polarization (DNP) is a promising new approach to enhancing the sensitivity of high-resolution magic-angle spinning (MAS) NMR. In pulsed DNP, the transfer of polarization from unpaired electrons to nuclei (usually 1H) is induced by a sequence of microwave pulses. Enhancement factors of the thermal 1H polarization are expected to be independent of the magnetic field, and sample heating by absorption of microwave irradiation will be strongly reduced. The development of DNP pulse sequences is still in its infancy. Of the two basic sequences in existence, NOVEL and TOP DNP, the former is, due to an extremely high power requirement, incompatible with high-resolution MAS NMR, while the latter displays a relatively slow transfer of polarization from electrons to 1H. We introduce here a new pulse sequence for DNP of solids, termed X-inverse-X (XiX) DNP. In experiments at 1.2 T, XiX DNP produces, compared to TOP DNP, a 2-fold higher gain in sensitivity. Our data suggest that a faster transfer of polarization from electrons to 1H is behind the superior performance of XiX DNP. Numerical simulations and experiments indicate that microwave pulse lengths can be chosen across a broad range, without loss of efficiency. These findings are a substantial step toward the implementation of pulsed DNP at high magnetic fields.
Collapse
Affiliation(s)
| | - Guinevere Mathies
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| |
Collapse
|
13
|
Yang C, Ooi Tan K, Griffin RG. DNPSOUP: A simulation software package for dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 334:107107. [PMID: 34894420 PMCID: PMC8819672 DOI: 10.1016/j.jmr.2021.107107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/01/2023]
Abstract
Dynamic Nuclear Polarization Simulation Optimized with a Unified Propagator (DNPSOUP) is an open-source numerical software program that models spin dynamics for dynamic nuclear polarization (DNP). The software package utilizes a direct numerical approach using the inhomogeneous master equation to treat the time evolution of the spin density operator under coherent Hamiltonians and stochastic relaxation effects. Here we present the details of the theory behind the software, starting from the master equation, and arriving at characteristic operators for any section of density operator time-evolution. We then provide an overview of the DNPSOUP software architecture. The efficacy of the program is demonstrated by simulating DNP field profiles on small spin systems exploiting both continuous wave and time-domain DNP mechanisms. Examples include Zeeman field profiles for the solid effect, Overhauser effect, and cross effect, and microwave field profiles for NOVEL, off-resonance NOVEL, the integrated solid effect, the stretched solid effect, and TOP-DNP. The software should facilitate a better understanding of the DNP process, aid in the design of optimized DNP polarizing agents, and allow us to examine new pulsed DNP methods at conditions that are not currently experimentally accessible, especially at high magnetic fields with high-power microwave pulses.
Collapse
Affiliation(s)
- Chen Yang
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Aspen Technology, Inc., 20 Crosby Drive, Bedford, MA 01730, United States
| | - Kong Ooi Tan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
14
|
Can TV, Tan KO, Yang C, Weber RT, Griffin RG. Time domain DNP at 1.2 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107012. [PMID: 34186299 PMCID: PMC9148420 DOI: 10.1016/j.jmr.2021.107012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 05/28/2023]
Abstract
We present the results of an experimental pulsed DNP study at 1.2 T (33.5 GHz/51 MHz electron and 1H Larmor frequencies, respectively). The results include a comparison of constant-amplitude NOVEL (CA-NOVEL), ramped-amplitude NOVEL (RA-NOVEL) and the frequency-swept integrated solid effect (FS-ISE) experiments all of which were performed at the NOVEL matching condition, ω1S=ω0I, where ω1S is the electron Rabi frequency andω0I the proton Larmor frequency. To the best of our knowledge, this is the first pulsed DNP study carried out at field higher than X-band (0.35 T) using the NOVEL condition. A combination of high microwave power (∼150 W) and a microwave cavity with a high Q (∼500) allowed us to satisfy the NOVEL matching condition. We also observed stretched solid effect (S2E) contributions in the Zeeman field profiles when chirped pulses are applied. Furthermore, the high quality factor of the cavity limits the concentration of the radical to ∼5 mM and generates a hysteresis in the FS-ISE experiments. Nevertheless, we observe very high DNP enhancements that are comparable to the results at X-band. These promising outcomes suggest the importance of further studies at even higher fields that delineate the instrumentation and methods required for time domain DNP.
Collapse
Affiliation(s)
- T V Can
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - K O Tan
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - C Yang
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - R T Weber
- Bruker BioSpin Corporation, Billerica, MA 01821, United States
| | - R G Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|