1
|
Chen M, Li D, Tian K, Chen G, Shi X, Liu S, Yan J. TiO 2 Supporting Cu-Au Alloy Nanoparticles for Photocatalytic Methanol Reforming to Hydrogen Production. Chem Asian J 2025:e202401267. [PMID: 40256808 DOI: 10.1002/asia.202401267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025]
Abstract
Methanol steam reforming (MSR) is a promising approach for hydrogen production, allowing for efficient production and safe transportation of hydrogen via liquid methanol. However, it requires relatively high temperatures to achieve high activity, resulting in huge energy consumption. In this study, a plasma copper-gold alloy catalyst supported on titanium dioxide was synthesized via the impregnation method followed by high-temperature calcination. The resulting nanoparticles exhibited an average size of approximately 12 nm, and their composition was controlled by adjusting the molar ratio of the precursor materials. The synthesized CuAu-TiO2 catalyst facilitates efficient solar-driven MSR without the need for additional thermal input. The optimized catalyst achieves a continuous hydrogen production rate of 78 µmol·g-1·h-1, with a solar energy conversion efficiency of 2.66%. We determined that the maximum conversion rate under photochemical catalysis conditions can reach 90.6%. We verified that the plasmon-induced hot carriers could catalyze the methanol steam reforming reaction at temperatures significantly lower than those required for traditional thermal catalysis, releasing hydrogen. Post-reaction, the catalyst can be recovered and reactivated for repeated use. This work provides a valuable demonstration for the development and application of future light-driven clean energy conversion systems.
Collapse
Affiliation(s)
- Mingjun Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, China
| | - Deng Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, China
| | - Kaige Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, China
| | - Guilin Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, China
| | - Xintong Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, China
| | - Shengzhong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Junqing Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
2
|
Valášková M, Filip Edelmannová M, Reli M, Ritz M, Martaus A, Plevová E, Kočí K. New evidence for the photocatalytic efficiency of natural raw vermiculites to produce hydrogen from aqueous methanol solution. Heliyon 2025; 11:e42366. [PMID: 40034279 PMCID: PMC11874548 DOI: 10.1016/j.heliyon.2025.e42366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/27/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
The potential of vermiculites as environmentally friendly photocatalysts for hydrogen production and pollutant degradation was demonstrated by a photocatalytic test in an aqueous 50 % methanol solution (MeOH50). After 4 h of irradiation with the commercial TiO2 Evonik P25 catalyst, the H2 yield was of 656.9 ± 4.2 μmol/gcat. For vermiculites Vm1, Vm3, and Vm4, hydrogen yields were comparable (H₂ = 420.6 ± 5.8 μmol/gcat; H₂ = 414.2 ± 1.8 μmol/gcat, and 449.3 ± 1.8 μmol/gcat, respectively) but were lower in the presence of vermiculite-chlorite intermediate Vm2 (H₂ = 385.1 ± 6.6 μmol/gcat). After the extended 24-h irradiation, hydrogen yield was promoted by the negative tetrahedral charge, while the positive octahedral charge inhibited the photocatalytic decomposition of the MeOH50 into hydrogen in favor of the formation of CO and CH4 byproducts. The decrease in methanol yield in the MeOH50 was effectively assessed by the red shift of the C-O and C-H bands in the Raman spectrum, corresponding to the photocatalytic production of H2.
Collapse
Affiliation(s)
- Marta Valášková
- VSB – Technical University of Ostrava, CEET, IET, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Miroslava Filip Edelmannová
- VSB – Technical University of Ostrava, CEET, IET, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Martin Reli
- VSB – Technical University of Ostrava, CEET, IET, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Michal Ritz
- VSB – Technical University of Ostrava, Faculty of Material Science and Technology, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Alexandr Martaus
- VSB – Technical University of Ostrava, CEET, IET, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Eva Plevová
- Institute of Geonics of the Czech Academy of Sciences, Studentska 1768, 708 00, Ostrava, Czech Republic
| | - Kamila Kočí
- VSB – Technical University of Ostrava, CEET, IET, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
3
|
Wu B, Jiang B, Guo C, Zhang J, Li Q, Wang N, Song Z, Tian C, Antonietti M, Fu H. Mild-Condition Photocatalytic Reforming of Methanol-Water by a Hierarchical, Asymmetry Carbon Nitride. Angew Chem Int Ed Engl 2025; 64:e202418677. [PMID: 39482249 DOI: 10.1002/anie.202418677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
As a reproducible intermediate for hydrogen (H2) and carbon cycling, methanol mixed with water (H2O) in a ratio of 1 : 1 can multiply the outcome of green H2 generation via Photocatalytic reforming of methanol-H2O (PRMW). Hitherto, low-energy and mild-condition PRMW remains a serious challenge. Here, the amino acid-derived carbon nitrides (ACN) were synthesized supramolecular precursor strategy for PRMW and achieved excellent performance (H2, 35.6 mmol h-1 g-1; CO2, 11.5 mmol h-1 g-1) under sunlight at 35 °C. It was revealed that the surface-terminating carboxyl groups (-COOH) promote the dark dehydrogenation of methanol on MetCNx to form methoxy (*OCH3) and methylol (*CH2OH) simultaneously, with the hydroxyl (*OH) generated by photostimulated H2O oxidation promotes the C-H activation of formaldehyde, then leads the whole reaction into the formation of CO2 and three H2. The extended light absorption, enhanced charge separation and transport, and efficient surface reaction improve photocatalytic efficiency.
Collapse
Affiliation(s)
- Baogang Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Changliang Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Jiawei Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Qi Li
- College of Material Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Nan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Zichen Song
- College of Material Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, 150080, Harbin, P. R. China
| |
Collapse
|
4
|
Feng Y, Lin C, Ma J, Ban C, Zhao W, Tao X, Gan L, Zhou X. Identifying and eliminating false positives in thermal-assisted photocatalysis. Chem Commun (Camb) 2024; 60:11156-11159. [PMID: 39291575 DOI: 10.1039/d4cc03246b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
We discovered that employing inappropriate calibration curves for activity evaluation resulted in false positive results. Specifically, an artificial efficiency of hydrogen production is exaggerated by up to 2.2-fold if the calibration curves are misused, leading to considerably high false positive results. Our study highlights the importance of utilizing the correct calibration curve to ensure a true performance, and is beneficial for fostering advancements in the development of thermal-assisted photocatalysis.
Collapse
Affiliation(s)
- Yajie Feng
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| | - Chi Lin
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| | - Jiangping Ma
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| | - Chaogang Ban
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| | - Wenling Zhao
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| | - Xiaoping Tao
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| | - Liyong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
- Chongqing Institute of New Energy Storage Material and Equipment, Chongqing 401120, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| | - Xiaoyuan Zhou
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
- Chongqing Institute of New Energy Storage Material and Equipment, Chongqing 401120, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Xiao M, Baktash A, Lyu M, Zhao G, Jin Y, Wang L. Unveiling the Role of Water in Heterogeneous Photocatalysis of Methanol Conversion for Efficient Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202402004. [PMID: 38531783 DOI: 10.1002/anie.202402004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024]
Abstract
Water molecules, which act as both solvent and reactant, play critical roles in photocatalytic reactions for methanol conversion. However, the influence of water on the adsorption of methanol and desorption of liquid products, which are two essential steps that control the performance in photocatalysis, has been well under-explored. Herein, we reveal the role of water in heterogeneous photocatalytic processes of methanol conversion on the platinized carbon nitride (Pt/C3N4) model photocatalyst. In situ spectroscopy techniques, isotope effects, and computational calculations demonstrate that water shows adverse effects on the adsorption of methanol molecules and desorption processes of methanol oxidation products on the surface of Pt/C3N4, significantly altering the reaction pathways in photocatalytic methanol conversion process. Guided by these discoveries, a photothermal-assisted photocatalytic system is designed to achieve a high solar-to-hydrogen (STH) conversion efficiency of 2.3 %, which is among the highest values reported. This work highlights the important roles of solvents in controlling the adsorption/desorption behaviours of liquid-phase heterogeneous catalysis.
Collapse
Affiliation(s)
- Mu Xiao
- School of Chemical Engineering Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Ardeshir Baktash
- School of Chemical Engineering Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Miaoqiang Lyu
- School of Chemical Engineering Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Guangyu Zhao
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Mineral Resources, 1 Technology Court, Pullenvale, QLD 4069, Australia
| | - Yonggang Jin
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Mineral Resources, 1 Technology Court, Pullenvale, QLD 4069, Australia
| | - Lianzhou Wang
- School of Chemical Engineering Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Ren G, Zhou M, Wang H. Weakened Interfacial Hydrogen Bond Connectivity Drives Selective Photocatalytic Water Oxidation toward H 2O 2 at Water/Brookite-TiO 2 Interface. J Am Chem Soc 2024; 146:6084-6093. [PMID: 38386422 DOI: 10.1021/jacs.3c13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The formation of H2O2 through the two-electron photocatalytic water oxidation reaction (WOR) is significant but encounters the competition with the four-electron O2 evolution reaction. Recent studies showed a crystal-phase dependence in H2O2 selectivity, where high purity brookite TiO2 (b-TiO2) exhibits remarkable H2O2 selectivity in contrast to the common rutile phase TiO2 (r-TiO2). However, the origin of such a structure-induced selectivity preference remains elusive, primarily due to the complexities associated with the solid-liquid interface system and excited-state chemistry. Herein, we conducted a comprehensive investigation into the selectivity mechanism of WOR at the water/b-TiO2(210) and water/r-TiO2(110) interfaces, employing first-principles molecular dynamics simulations and microkinetic analyses. Intriguingly, our results reveal that the intrinsic catalytic ability of the b-TiO2(210) itself does not enhance H2O2 selectivity compared to r-TiO2(110). Instead, it is the weakened interfacial hydrogen bond connectivity, modulated by the herringbone-like local atomic structure of the b-TiO2(210) surface, that determines the selectivity. Specifically, this weakened H-bond connectivity (i.e., local low water density) at the interface, owing to the strong water adsorption and distinct adsorption orientation, can stabilize the OH• radical and inhibit its deprotonation, leading to an improved H2O2 selectivity. By contrast, the relatively strong interface H-bond connectivity established over r-TiO2(110) accelerates the deprotonation of OH•, with the OH• coverage being 3 orders of magnitude lower than at the water/b-TiO2(210) interface. This study quantitatively demonstrates that the local H-bond structure (water density) at the liquid/solid interface significantly influences photocatalytic selectivity, and this insight may offer a rational approach to enhance the H2O2 selectivity.
Collapse
Affiliation(s)
- Guanhua Ren
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| | - Haifeng Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Fukushima T, Ashizawa D, Murakoshi K. Rapid detection of donor-dependent photocatalytic hydrogen evolution by NMR spectroscopy. RSC Adv 2022; 12:12967-12970. [PMID: 35497003 PMCID: PMC9049774 DOI: 10.1039/d2ra01676a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Understanding molecular processes at nanoparticle surfaces is essential for designing active photocatalytic materials. Here, we utilize nuclear magnetic resonance (NMR) spectroscopy to track photocatalytic hydrogen evolution using donor molecules and water isotopologues. Pt-TiO2 catalysts were prepared and used for isotopic hydrogen evolution reactions using alcohols as electron donors. 1H NMR monitoring revealed that evolution of the H2 and HD species is accompanied by the oxidation of donor molecules. The isotopic selectivity in the hydrogen evolution reaction gives rise to formal overpotential. Based on a comparison of the rates of hydrogen evolution and donor oxidation, we propose the use of ethanol as an efficient electron donor for the hydrogen evolution reaction without re-oxidation of radical intermediates.
Collapse
Affiliation(s)
| | - Daiki Ashizawa
- Department of Chemistry, Faculty of Science, Hokkaido University Japan
| | - Kei Murakoshi
- Department of Chemistry, Faculty of Science, Hokkaido University Japan
| |
Collapse
|
8
|
Zhou M, Wang H. Optimally Selecting Photo- and Electrocatalysis to Facilitate CH 4 Activation on TiO 2(110) Surface: Localized Photoexcitation versus Global Electric-Field Polarization. JACS AU 2022; 2:188-196. [PMID: 35098235 PMCID: PMC8790734 DOI: 10.1021/jacsau.1c00466] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 05/08/2023]
Abstract
Photo- and electrocatalytic technologies hold great promise for activating inert chemical bonds under mild conditions, but rationally selecting a more suitable method in between to maximize the performance remains an open issue, which requires a fundamental understanding of their different catalytic mechanisms. Herein, by first-principles calculations, we systematically compare the activation mechanisms for the C-H bond of the CH4 molecule on TiO2(110) under the photo- and electrocatalytic modes without or with water involved. It quantitatively reveals that the activation barrier of the C-H bond decreases dramatically with a surprising 74% scale by photoexcitation relative to that in thermocatalysis (1.12 eV), while the barrier varies with a maximum promotion of only 5% even under -1 V/Å external electric field (EEF). By detailed geometric/electronic analysis, the superior photocatalytic activity is traced to the highly oxidative lattice Obr •- radical excited by a photohole (h +), which motivates the homolytic C-H bond scission. However, under EEF from -1 V/Å to 1 V/Å, it gives a relatively mild charge polarization on the TiO2(110) surface region and thus a limited promotion for breaking the weakly polar C-H bond. By contrast, in the presence of water, we find that EEF can facilitate CH4 activation indirectly assisted by the surface radical-like OH* species from the oxidative water cleavage at high oxidative potential (>1.85 V vs SHE), which explains the high energy cost to drive electrocatalytic CH4 conversion in experiment. Alternatively, we demonstrate that more efficient CH4 activation could be also achieved at much lower oxidative potential when integrating the light irradiation. In such a circumstance, EEF can not only promote the h + accumulation at the catalyst surface but also help H2O deprotonation to form hydroxide, which can serve as an efficient hole-trapper to generate OH• radical (OH- + h + → OH•), unveiling an interesting synergistic photoelectrocatalytic effect. This work could provide a fundamental insight into the different characteristics of photo- and electrocatalysis in modulating chemical bond cleavage.
Collapse
|
9
|
Najafishirtari S, Friedel Ortega K, Douthwaite M, Pattisson S, Hutchings GJ, Bondue CJ, Tschulik K, Waffel D, Peng B, Deitermann M, Busser GW, Muhler M, Behrens M. A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chemistry 2021; 27:16809-16833. [PMID: 34596294 PMCID: PMC9292687 DOI: 10.1002/chem.202102868] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/15/2023]
Abstract
Selective oxidation of higher alcohols using heterogeneous catalysts is an important reaction in the synthesis of fine chemicals with added value. Though the process for primary alcohol oxidation is industrially established, there is still a lack of fundamental understanding considering the complexity of the catalysts and their dynamics under reaction conditions, especially when higher alcohols and liquid-phase reaction media are involved. Additionally, new materials should be developed offering higher activity, selectivity, and stability. This can be achieved by unraveling the structure-performance correlations of these catalysts under reaction conditions. In this regard, researchers are encouraged to develop more advanced characterization techniques to address the complex interplay between the solid surface, the dissolved reactants, and the solvent. In this mini-review, we report some of the most important approaches taken in the field and give a perspective on how to tackle the complex challenges for different approaches in alcohol oxidation while providing insight into the remaining challenges.
Collapse
Affiliation(s)
- Sharif Najafishirtari
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| | - Klaus Friedel Ortega
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| | - Mark Douthwaite
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | - Samuel Pattisson
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | | | - Christoph J. Bondue
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Kristina Tschulik
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Daniel Waffel
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Baoxiang Peng
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Michel Deitermann
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - G. Wilma Busser
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Martin Muhler
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Malte Behrens
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| |
Collapse
|
10
|
Xu BB, Zhou M, Ye M, Yang LY, Wang HF, Wang XL, Yao YF. Cooperative Motion in Water-Methanol Clusters Controls the Reaction Rates of Heterogeneous Photocatalytic Reactions. J Am Chem Soc 2021; 143:10940-10947. [PMID: 34281341 DOI: 10.1021/jacs.1c02128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Detailed information about the influences of the cooperative motion of water and methanol molecules on practical solid-liquid heterogeneous photocatalysis reactions is critical for our understanding of photocatalytic reactions. The present work addresses this issue by applying operando nuclear magnetic resonance (NMR) spectroscopy, in conjunction with density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations, to investigate the dynamic behaviors of heterogeneous photocatalytic systems with different molar ratios of water to methanol on rutile-TiO2 photocatalyst. The results demonstrate that methanol and water molecules are involved in the cooperative motions, and the cooperation often takes the form of methanol-water clusters that govern the number of methanol molecules reaching to the active sites of the photocatalyst per unit time, as confirmed by the diffusion coefficients of the methanol molecule calculated in the binary methanol-water solutions. Nuclear Overhauser effect spectroscopy experiments reveal that the clusters are formed by the hydrogen bonding between the -OH groups of CH3OH and H2O. The formation of such methanol-water clusters is likely from an energetic standpoint in low-concentration methanol, which eventually determines the yields of methanol reforming products.
Collapse
Affiliation(s)
- Bei-Bei Xu
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, People's Republic of China
| | - Min Zhou
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| | - Man Ye
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, People's Republic of China
| | - Ling-Yun Yang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Hai-Feng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Lu Wang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, People's Republic of China
| | - Ye-Feng Yao
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, People's Republic of China
| |
Collapse
|