1
|
Liu W, Dong J, Ren Y, Zhou W, Han Q, Zhang C, Ren K, Wang Y, Gao W, Qi J. Fabrication of plasmonic Au-Ag alloy nanostars for ultrasensitive SERS detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126208. [PMID: 40245452 DOI: 10.1016/j.saa.2025.126208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
In this paper, Au-Ag alloy nanostar (Au-Ag NSt) substrates were prepared by liquid-liquid three-phase self-assembly method, and the influence of preparation conditions on their Raman activity of the substrate was explored. By adjusting the gold-silver ratios of alloy seeds and the concentration of AgNO3 in the growth solution, it was found that the LSPR peak can be adjusted. Under the conditions of Au1-Ag3 nanoparticles as seeds and 200 μL AgNO3 solution (2 mM) as epitaxial growth solution, the prepared Au1-Ag3 NSt substrate exhibits excellent SERS activity. The substrate can detect R6G and CV probe molecules with detection limits as low as 10-11 M and 10-10 M, respectively. Experiments have confirmed that the substrate has the characteristics of high sensitivity, good uniformity and strong stability. In addition, the substrate can detect APM molecules far below the safety standard, which further proves that the structure has excellent practical application potential as a SERS substrate.
Collapse
Affiliation(s)
- Wen Liu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Jun Dong
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Yuchong Ren
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Wanting Zhou
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Qingyan Han
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Chengyun Zhang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Kaili Ren
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Yongkai Wang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Wei Gao
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Jianxia Qi
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| |
Collapse
|
2
|
Ye Z, Zheng Y, Ruan S, Liu J, Li Y, Wang C, Lu Y, You R, Xiao L, Chen J, Wu Y, Chen J, Zhu L, Yan Z. Interface self-assembly preparation of Nylon66-Ag for monitoring of H 2O 2 and AA in serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126238. [PMID: 40267578 DOI: 10.1016/j.saa.2025.126238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/29/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
Monitoring the redox status in vivo is important for maintaining redox homeostasis and understanding related pathological processes. In this study, based on an interfacial self-assembly method, a silver-coated nylon film (Nylon66-Ag) was prepared as a SERS substrate and a single-molecule specific SERS probe, 2-mercapto-1,4-diphenol (2-MHQ), was modified on the silver nanoparticles for sensitive detection of H2O2 and AA in human serum. Remarkably, this method, without the introduction of internal standard signaling molecules, only one Raman signaling reporter molecule, 2-MHQ, was able to sensitively detect H2O2 and AA, and thus monitor the redox reactions in human serum, with LODs as low as 4.03 × 10-10 M for H2O2 and 9.42 × 10-9 M for AA. The detection limits are significantly lower than the concentration ranges of endogenous H2O2 and AA in the blood of healthy individuals. The SERS strategy proposed in this paper is expected to be used to study signaling pathways related to redox kinetics.
Collapse
Affiliation(s)
- Ziting Ye
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Avanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yujun Zheng
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Avanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Shuyan Ruan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Avanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jiajia Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Avanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ying Li
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Avanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Chuyi Wang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Avanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Avanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Avanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Liren Xiao
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Avanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jingxin Chen
- Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Yaling Wu
- School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China.
| | - Jingbo Chen
- Department of Oncology, Shengli Clinical Medical College Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China
| | - Lanjin Zhu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Avanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zixing Yan
- Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou 350004, China.
| |
Collapse
|
3
|
Wang M, Zheng L, Sun F, Ye Q, Liang P, Pang K, Ye Z, Wang Y. Revolutionizing Escherichia coli detection in real samples with digital SERS aptamer sensor technology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126314. [PMID: 40311255 DOI: 10.1016/j.saa.2025.126314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Aptamer sensors based on surface-enhanced Raman scattering (SERS) technology have demonstrated great potential in the ultrasensitive and rapid detection of Escherichia coli (E. coli). Herein, this paper presents a digital SERS aptamer sensor. This sensor integrates ordered nanoscale array synthesis technology and digital analysis technology, enabling highly sensitive and rapid bacterial quantification. The ordered monolayer gold nanosphere arrays (Au NS) can form uniform and dense "hot spots" on the silicon wafer due to their uniform spherical structures and narrow gaps. Moreover, digital SERS is adopted to further optimize the signal uniformity so as to achieve precise quantification. The sensor modules are combined together through base pairing. The aptamers labeled with Raman tags are detached from the complementary DNA due to the competition of the target substance, thus realizing the detection of E. coli. The digital SERS aptamer sensor has been verified to possess excellent selectivity and reproducibility. It has a wide dynamic linear detection range from 1.0 * 101 to 1.0 * 109 CFU/ml and a detection limit of 0.657 CFU/ml, maintaining excellent specificity even in the presence of mixed bacterial interference. The spiked recoveries in actual samples range from 98.80 % to 99.81 %. Leveraging different aptamers and digital analysis, the sensor holds promise for food safety and environmental monitoring applications.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Li Zheng
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Fan Sun
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Qingdan Ye
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| | - Kun Pang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zihong Ye
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yufeng Wang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Li J, Dai Y, Pan Z, He J, Chang L. Monitoring nanoplastic aging in situ by moth-eye mimic plasmonic substrates. Anal Chim Acta 2025; 1358:344068. [PMID: 40374254 DOI: 10.1016/j.aca.2025.344068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 05/17/2025]
Abstract
Micro-nano plastics aging is crucial as it determines the environmental fate of each plastic particle, yet few studies involved in situ aging of nanoplastics. Herein, we utilized nanosphere lithography combined with goldnanorod assembly to prepare a moth-eye mimic plasmonic substrate featuring excellent SERS performance. The substrate was applied to in situ characterize the degradation process of PS nanoplastics during UV aging. Raman spectra evidence that the substrate is sensitive to superficial chemical changes of PS nanoplastics at initial stage during 24 h of continuous UV aging. The disruption of the benzene ring skeleton, the oxidation of the side chains of PS nanoplastics during UV aging, and the presence of oxidized methylene straight chains were identified. Practical applications in environmental sample revealed the chemical changes of PP, PS, and PE, which confirm the great potential of this SERS substrate for aging studies of nanoplastics.
Collapse
Affiliation(s)
- Jiayu Li
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Yujie Dai
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhicheng Pan
- National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, 643000, PR China; National Postdoctoral Research Station, Haitian Water Group, Chengdu, 610000, PR China.
| | - Jing He
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Lin Chang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China; National Postdoctoral Research Station, Haitian Water Group, Chengdu, 610000, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
5
|
Wu GF, Zhu J, Weng GJ, Li JJ, Zhao JW. 3D composite SERS substrate constructed by Au-Ag core-satellite NPs and polystyrene sphere for ultrasensitive ratiometric Raman detection of cotinine. Talanta 2025; 289:127742. [PMID: 39985926 DOI: 10.1016/j.talanta.2025.127742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
To enhance the efficacy of Surface-enhanced Raman spectroscopy (SERS), noble metal nanoparticles (NMNPs) can be organized onto three-dimensional (3D) hierarchical nanostructures. This study involved constructing a 3D solid SERS substrate by layering Au-Ag core-satellite nanoparticle monolayer films (MF) on a polystyrene sphere (PS) array, termed Au-Ag core-satellite NPs-MF-PS. Optimizing the PS size was essential to maximize SERS substrate activity, with the 500 nm PS providing the best SERS enhancement factor of 1.03 × 107 a two-fold increase over Au-Ag core-satellite NPs MF alone. Additionally, cotinine detection was improved by using a ratio between the target molecules and internal Raman signals from the SERS substrate. Compared to conventional methods relying on the target molecule's Raman signal, this ratiometric SERS method expanded the detection range from 10-8 - 10-1 M to 10-9 - 10-1 M and reduced the detection limit from 3.67 × 10-9 M to 1.68 × 10-10 M. This approach represents a novel direction in creating ultra-sensitive SERS platforms with broad applications, suggesting that ratiometric SERS could further promote SERS technology advancements.
Collapse
Affiliation(s)
- Gao-Feng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
6
|
Dong M, Ding F, Jin Y, Li C, Lin X, Lin S. Facile Synthesis of Ultrasmooth Au Nanospheres into Macroscopic 3D Supercrystals for Machine-Learning-Driven Analysis of Thiram in Soil. Anal Chem 2025; 97:10452-10462. [PMID: 40327790 DOI: 10.1021/acs.analchem.5c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Self-assembly of nanocrystals into a macroscopic 3D superlattice has emerged as a promising nanostructure due to its collective optical and electrical properties. In this work, a macroscale supercrystal was constructed under constant temperature and humidity with an ultrasmooth Au nanosphere (NS) as a building block synthesized by a facile route. In particular, a reproducible and facile strategy was developed to fabricate highly spherical Au NSs with nanoscale size tenability. Importantly, this method does not require a syringe pump and breaks the limitation of instrumentation for the synthesis of Au NS, significantly contributing to the promotion and popularization of Au NSs. Meanwhile, an operable and cost-effective droplet slow evaporation self-assembly approach was applied to form a homogeneous 3D superlattice array against coffee rings with an enhancement factor as high as 1.37 × 108 verified by FDTD simulation results. Furthermore, integrating a convolutional neural network (CNN) model with the ultrasensitive 3D superlattice SERS platform, the precise and wide-range concentration prediction of the pesticide thiram in soil was successfully demonstrated, breaking the limitation of high-concentration saturation in the conventional concentration-intensity fitting curve. Consequently, this innovative Au NS 3D supercrystal facilitates the fabrication of novel nanoassemblies with ideal plasmonic functions for extensive applications in the fields of food safety, environment, medicine, and biology.
Collapse
Affiliation(s)
- Mingyuan Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Fangfang Ding
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Yanan Jin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Chi Li
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Xiang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Shuang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
7
|
Fang Z, Dong J, Fan Y, Li C, Han Q, Zhang C, Zhu L, Yan X, Qi J, Gao W. Transfer of AuNRs into AAO Nanoholes via Self-Assembly Method for Ultrasensitive SERS Detection. ACS OMEGA 2025; 10:18764-18774. [PMID: 40385221 PMCID: PMC12079245 DOI: 10.1021/acsomega.5c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/08/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025]
Abstract
Surface-enhanced Raman scattering (SERS) has become an advanced spectroscopic analysis method in the fields of chemistry, biomedical sensing, and imaging, owing to its excellent vibrational signal recognition and sensitivity for single-molecule detection. The effectiveness of SERS technology relies on the development of high-performance substrates, which must possess high sensitivity, uniformity, and repeatability. In this study, the enhanced substrates with high Raman activity were successfully prepared by adopting the three-phase self-assembly method to assemble gold nanorods (AuNRs) into nanopores of ultrathin porous alumina (AAO) films. By precisely controlling the pore size of AAO and the dimensions of AuNRs, the ability of the substrates and the Raman detection limits are enhanced significantly. Probe molecules, including Rhodamine 6G (R6G), Crystal Violet (CV), and Aspartame (APM), were selected to test the substrates sensitivity and uniformity, with detection limits of 10-13, 10-12 M, and 7.8 mg/L, respectively. Random sampling was conducted on the substrate surface to analyze the spectral characteristics of the characteristic peaks of R6G and CV molecules, and the relative standard deviations (RSD) were 4.3 and 3.18% at characteristic peaks 612 and 1619 cm-1, respectively, demonstrating the enhanced uniformity of the prepared substrates. This research indicates that assembling AuNRs onto AAO substrates results in significant Raman activity, providing a more reliable platform for the application of SERS technology.
Collapse
Affiliation(s)
- Ziqing Fang
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Jun Dong
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Yimeng Fan
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Chenlu Li
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Qingyan Han
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Chengyun Zhang
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Lipeng Zhu
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Xuewen Yan
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Jianxia Qi
- School
of Science, Xi’an University of Posts
and Telecommunications, Xi’an 710121, China
| | - Wei Gao
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| |
Collapse
|
8
|
Jin Y, Zhang J, Wu X, Qu C, Fang X, Yang Y, Yuan Y, Liu H, Han Z. Microfluidics-based label-free SERS profiling of exosomes with machine learning for osteosarcoma diagnosis. Talanta 2025; 294:128276. [PMID: 40344844 DOI: 10.1016/j.talanta.2025.128276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Osteosarcoma (OS) calls for early diagnosis to significantly improve patient survival rates. Exosomes hold significant potential as noninvasive biomarkers for the early diagnosis of cancer. Here, we design a microfluidic device to purify and analyze plasma-derived exosomes by label-free surface-enhanced Raman spectroscopy (SERS) profiling for OS diagnosis. Exosomes were isolated, purified, and enriched using a size-dependent microfluidic chip with tangential flow filtration, achieving a high recovery rate of 82 %. The isolated exosomes were then analyzed by label-free SERS using a nanoarray chip with self-assembly monolayers of gold nanoparticles (GNPs). Exosomes originating from different OS cell types were differentiated based on the intrinsic SERS signals. Our approach was further employed to analyze the plasma-derived exosomes from healthy donors and OS patients without the need for specific biomarker labeling. A machine learning-based diagnostic model for OS was constructed, achieving an accuracy of 93 %. The findings indicate that our method is valuable for noninvasive and precise diagnosis of OS and could be generalized to other diseases in the future.
Collapse
Affiliation(s)
- Ying Jin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Junjie Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Xinyi Wu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Cheng Qu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, PR China
| | - Xingru Fang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, PR China
| | - Yi Yang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, PR China
| | - Yue Yuan
- Department of Pediatric Orthopedics, Anhui Children's Hospital (Children's Hospital of Anhui Medical University), Hefei, 230051, Anhui, PR China.
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, PR China.
| | - Zhenzhen Han
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
9
|
Xiang Q, Wang H, Liu S, Zheng Y, Wang S, Zhang H, Min Y, Ma Y. Highly sensitive and reproducible SERS substrate based on ordered multi-tipped Au nanostar arrays for the detection of myocardial infarction biomarker cardiac troponin I. Analyst 2025. [PMID: 40264296 DOI: 10.1039/d5an00171d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Acute myocardial infarction (AMI) is a severe cardiovascular disease, for which early diagnosis is critical for reducing mortality and improving patient outcomes. Cardiac troponin I (cTnI) is widely recognized as the "gold standard" biomarker for AMI due to its high specificity and sensitivity. The concentration of cTnI correlates directly with different stages of AMI. Therefore, the accurate detection of cTnI concentration is of paramount importance. However, the low concentration of cTnI in biological fluids requires ultrasensitive detection methods. In this study, we developed a sandwiched surface enhanced Raman scattering (SERS)-based biosensor composed of SERS-immune substrate, target antigen, and SERS nanotags and realized sensitive and accurate detection of cTnI. The SERS-immune substrate features an ordered, multi-tipped monolayer of Au nanostars fabricated using a three-phase interfacial self-assembly method and 4-(2-hydroxyerhyl)piperazine-1-erhanesulfonic acid (HEPES) buffer modification. Compared to Au nanosphere SERS substrates, the Au nanostar SERS substrates exhibited about a 3-fold increase in Raman enhancement and demonstrated good uniformity and batch stability. This novel SERS detection platform, leveraging dual plasmonic enhancement from both the SERS-immune substrate and SERS nanotags, achieves detection of cTnI with a limit of detection (LOD) as low as 9.09 pg mL-1 and a relative standard deviation (RSD) as low as 11.24%. Thus, the Au nanostar SERS substrates developed in this study demonstrate significant potential for rapid and accurate detection of cTnI.
Collapse
Affiliation(s)
- Qing Xiang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Hao Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Shengdong Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Yilong Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Shipan Wang
- Guangdong Juhua Printing Display Technology Co., Ltd, Guangzhou, 510700, PR China
| | - Huanhuan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Yuguang Ma
- Department of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| |
Collapse
|
10
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
11
|
Pant U, Tate J, Liu X, Birse N, Elliott C, Cao C. From automated Raman to cost-effective nanoparticle-on-film (NPoF) SERS spectroscopy: A combined approach for assessing micro- and nanoplastics released into the oral cavity from chewing gum. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136978. [PMID: 39731894 DOI: 10.1016/j.jhazmat.2024.136978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/05/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Microplastics (MPs) and Nanoplastics (NPs), a burgeoning health hazard, often go unnoticed due to suboptimal analytical tools, making their way inside our bodies through various means. Surface Enhanced Raman Spectroscopy (SERS), although is utilized in detecting NPs, challenges arise at low concentrations due to their low Raman cross section and inability to situate within hotspots owing to their ubiquitous size and shape. This study presents an innovative and cost-effective approach employing household metallic foils (aluminium and copper) as nanoparticle-on-film (NPoF) substrates for targeting such analytes. Leveraging from the near field enhancements due to plasmonic coupling amidst third-generation hotspots (TGHs) and second-generation hotspots (SGHs), the enhanced SERS activity is achieved. Furthermore, following an extensive comparison of the substrates' flexibility, sensitivity, reproducibility, and robustness, the copper foil-based NPoF platform was used to detect 100 nm polystyrene plastics down to 1 μg/ml concentration. Subsequently, a systematic detection of more than 250,000 MPs with automated Raman spectroscopy was performed, followed by the detection of NPs using SERS with a NPoF substrate in saliva samples released from the gum base in the oral cavity during a one-hour chewing activity. Overall, we report a cost-effective and versatile NPoF substrate, having the potential to screen a diverse array of environmental pollutants envisioned as a potential point-of-site tool by coupling it with a handheld Raman instrument.
Collapse
Affiliation(s)
- Udit Pant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - James Tate
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Xiaotong Liu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Nicholas Birse
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand
| | - Cuong Cao
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Material and Advanced Technologies for Healthcare, Queen's University of Belfast, 18-30 Malone Road, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
12
|
Diao X, Qi G, Li X, Tian Y, Li J, Jin Y. Label-Free Exosomal SERS Detection Assisted by Machine Learning for Accurately Discriminating Cell Cycle Stages and Revealing the Molecular Mechanisms during the Mitotic Process. Anal Chem 2025; 97:5093-5101. [PMID: 39999424 DOI: 10.1021/acs.analchem.4c06240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell cycle analysis is crucial for disease diagnosis and treatment, especially for investigating cell heterogeneity and regulating cell behaviors. Exosomes are highly appealing as noninvasive biomarkers for monitoring real-time changes in the cell cycle due to their abundant molecular information inherited from their metrocyte cells and reflecting the state of these cells to some extent. However, to our knowledge, the relationship between exosomes and the cell cycle has not been reported. Herein, we successfully monitored the variation of exosomal surface-enhanced Raman spectroscopy (SERS) spectra to discriminate different cell cycle stages (G0/G1, S, and G2/M phases) based on label-free surface-enhanced Raman spectroscopy (SERS) combined with the machine learning method of linear discriminant analysis (LDA). An average accuracy of 85% based on the trained SERS spectra of exosomes from different cell cycle stages confirmed the high reliability of the support vector machine (SVM) algorithm for analyzing dynamic changes in the cell cycle at different time points. Importantly, the related molecular mechanisms among mitotic processes (prometaphase, metaphase, and anaphase/telophase) and unique biomolecular events between cancerous (HeLa) and normal (H8) cells were also revealed by the present label-free SERS detection platform. Based on SERS analysis, the content of phenylalanine (Phe) within HeLa cells increased, and some structures of proteins containing Phe and tryptophan (Trp) residues may be transformed during the mitotic process. Notably, the α-helix and β-sheet of proteins coexisted in HeLa cells; meanwhile, the α-helix of the proteins was more dominant in H8 cells than in HeLa cells. The strategy is effective for discriminating cell cycle stages and elucidating the associated molecular events during the cell mitotic process and will provide potential application value for guiding the cell cycle treatment strategies of cancer in the future.
Collapse
Affiliation(s)
- Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - GuoHua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xinli Li
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, P. R. China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
13
|
Mi X, Zhao X, Luo Y, Li Y, Wu Y, Xue S, Yang X, Zhang Z, Qiao H. Au nanoflower/Au island hybrid substrate as high-performance SERS platforms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125483. [PMID: 39612533 DOI: 10.1016/j.saa.2024.125483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Surface-enhanced Raman scattering (SERS) offers significant enhancements to weak Raman signals, which has been widely used for the detection of ultra-low concentrations of molecules. Obtaining repeatable SERS substrates with high density "hot spots" is one of the main challenges for quantitative analysis using SERS. Herein, a SERS substrate based on Au nanoflower/nanoisland (NF/NI) hybrid substrate is constructed. The Au NF/NI substrate can generate "hot spots" by the nanogap between nanotip of Au NF and Au NI, which has been proved to have high stability and sensitivity by experiments, the limit of detection is determined to be down to 10-11 M for Rhodamine 6G (R6G) molecules. In addition, the Au NF/NI hybrid substrate as template can be further extended to prepare bimetallic SERS substrates. This synthetic pathway will not only contribute to the design of new type of SERS substrate, but also promote understanding of the growth mechanisms of multicomponent nanostructure.
Collapse
Affiliation(s)
- Xiaohu Mi
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xixian New Area 712046, China
| | - Xin Zhao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yuting Luo
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yongfeng Li
- Key Laboratory of Acupuncture and Medicine of Shaanxi Province, Shaanxi University of Chinese Medicine, Xixian New Area 712046, China
| | - Yuwei Wu
- Key Laboratory of Acupuncture and Medicine of Shaanxi Province, Shaanxi University of Chinese Medicine, Xixian New Area 712046, China
| | - Simeng Xue
- Key Laboratory of Acupuncture and Medicine of Shaanxi Province, Shaanxi University of Chinese Medicine, Xixian New Area 712046, China
| | - Xiaohang Yang
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xixian New Area 712046, China
| | - Zhenglong Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.
| | - Haifa Qiao
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xixian New Area 712046, China; Key Laboratory of Acupuncture and Medicine of Shaanxi Province, Shaanxi University of Chinese Medicine, Xixian New Area 712046, China.
| |
Collapse
|
14
|
Iaccarino P, Wang Z, Marfuggi A, Russo S, Ferraro V, Vitiello G, Coppola S, Di Maio E. Thin free-standing liquid films manipulation: device design to turn on/off gravity in flow regimes for thickness map control and for material structuring. SOFT MATTER 2025; 21:1455-1470. [PMID: 39503599 DOI: 10.1039/d4sm00951g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
The manipulation and control of free-standing liquid film drainage dynamics is of paramount importance in many technological fields and related products, ranging from liquid lenses to liquid foams and 2D structures. In this context, we theoretically design and introduce a device where we can reversibly drive flow regime switch between viscous-capillary and viscous-gravity in a thin free-standing liquid film by altering its shape, allowing us to manipulate and stabilize the film thickness over time. The device, which mainly consists of a syringe pump, a pressure transducer, and a 3D-printed cylinder, is coupled with a digital holography setup to measure, in real time, the evolution of the local film thickness map, revealing characteristic features of viscous-capillary and viscous-gravity driven drainage regimes. By using polyvinyl alcohol/water concentrated solutions, we are also able to produce viscoelastic membranes after manipulation and water evaporation, which presents manipulation history-dependent geometrical properties. Furthermore, using a system composed of carboxymethyl cellulose, water, and rod-like zinc oxide nanoparticles, we show a clear effect of film manipulation on particle rearrangement. We believe this device could represent a starting point for the development of a useful and practical tool to study thin liquid film dynamics and to produce novel (patterned) 2D structures for the numerous scientific and technical fields where they are of use.
Collapse
Affiliation(s)
- Paolo Iaccarino
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Naples, Italy
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, 80125 Naples, Italy.
- Foamlab, P.le Tecchio 80, 80125 Naples, Italy
| | - Zhe Wang
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, 80125 Naples, Italy.
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Italian National Research Council (ISASI-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (Naples), Italy
| | - Andrea Marfuggi
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, 80125 Naples, Italy.
- Foamlab, P.le Tecchio 80, 80125 Naples, Italy
| | - Simone Russo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, 80125 Naples, Italy.
| | - Vincenzo Ferraro
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, 80125 Naples, Italy.
- Dipartimento di Ingegneria e Architettura, University of Parma, Via delle Scienze 181, 43124 Parma, Italy
| | - Giuseppe Vitiello
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, 80125 Naples, Italy.
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Florence, Italy
| | - Sara Coppola
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello", Italian National Research Council (ISASI-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (Naples), Italy
| | - Ernesto Di Maio
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, 80125 Naples, Italy.
- Foamlab, P.le Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
15
|
Tian X, Wang P, Fang G, Lin X, Gao J. Simultaneous quantitative analysis of multiple metabolites using label-free surface-enhanced Raman spectroscopy and explainable deep learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125386. [PMID: 39509865 DOI: 10.1016/j.saa.2024.125386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Metabolites serve as vital biomarkers, reflecting physiological and pathological states and offering insights into disease progression and early detection. This study introduces an advanced analytical technique integrating label-free Surface-Enhanced Raman Spectroscopy (SERS) with deep learning, and leverages SHAP (SHapley Additive exPlanations) to provide a visual interpretative analysis of the predictive rationale of the deep learning model, facilitating simultaneous detection and quantitative analysis of multiple metabolites. Monolayer silver nanoparticle SERS substrates were fabricated via a triple-phase interfacial self-assembly method, which captured complex spectral information of target metabolites in mixed solutions. A custom-built deep neural network model with multi-channel feature extraction was employed to predict the concentrations of uric acid (R2 = 0.976), xanthine (R2 = 0.971), hypoxanthine (R2 = 0.977), and creatinine (R2 = 0.940). The method's scalability was validated as the performance remained consistent with an increasing number of simultaneous targets. This approach offers a sensitive, cost-effective, and rapid alternative for metabolite analysis, with significant implications for clinical diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Xianli Tian
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Peng Wang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Guoqiang Fang
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450018, China
| | - Xiang Lin
- School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Jing Gao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
16
|
Chen ZH, Sun N, Li JP, Zheng JW, Wang YH, Zhou XS, Zheng B. SERS calibration substrate with a silent region internal standard for reliable simultaneous detection of multiple antibiotics in water. Talanta 2025; 283:127133. [PMID: 39488159 DOI: 10.1016/j.talanta.2024.127133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
As the extensive use of antibiotics has led to the rapid spread of antibiotic resistance, there is an urgent need for quantitative assessment of antibiotic residues in the environment. Surface-enhanced Raman spectroscopy (SERS) has emerged as a rapid and cost-effective detection method, but it suffers from the high variability in signal intensities, its quantitative detection remains challenging. Herein, we have developed a SERS calibration substrate with a silent region internal standard, enabling simultaneous and reliable quantitative detection of three commonly antibiotics of penicillin potassium (PP), tetracycline hydrochloride (TCH) and levofloxacin (LEV). The calibration substrate is made by assembling Au @ 4-mercaptobenzonitrile (4-MBN) @ SiO2 on silicon wafer. The chemically-inert silica shell allows the substrate to remain SERS active for more than 24 weeks in the air. The vC ≡ N of 4-MBN in the silent region of 1800-2800 cm-1 provides an effective reference for correcting Raman signal fluctuations. The relative SERS intensity by normalizing to the internal standard (IS) of vC ≡ N shows a linear response against to the logarithmic concentration with a correlation coefficient of 0.997, 0.976, 0.998 and a limit of detection (LOD) of 26.9, 28.2, 2.4 nM for PP, TCH and LEV, respectively. Furthermore, simultaneous detection and principal component analysis (PCA) of these antibiotics in lake water with a concentration range of 1-100 mg/L can achieve a sensitivity and specificity of 100 %. This novel quantitative technique of using this SERS calibration substrate shows promises as a high-throughput platform for multiple trace antibiotics analysis.
Collapse
Affiliation(s)
- Zhao-He Chen
- School of Public Health, Hangzhou Medical College, Hangzhou 310014, China; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Nan Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jian-Ping Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Wei Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Bin Zheng
- School of Public Health, Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
17
|
Fang G, Lin X, Wu J, Xu W, Hasi W, Dong B. Porous Nanoframe Based Plasmonic Structure With High-Density Hotspots for the Quantitative Detection of Gaseous Benzaldehyde. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408670. [PMID: 39778054 DOI: 10.1002/smll.202408670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/22/2024] [Indexed: 01/11/2025]
Abstract
Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots. L-cysteines (l-Cys)-modified 3D Au@Ag-Au PPFs are proposed as a benzaldehyde (BA) gas detection carrier to accurately detect biomarkers in complex exhaled gases and eliminate interference from other components. Unlike the conventional use of 4-aminothiophenol as a linker molecule, the novel L-Cys-modified SERS substrate is sensitive toward the aldehyde molecules and immune to other volatile organic compounds (ethanol, cyclohexane, toluene, etc.). Furthermore, a medical mask consisting of this SERS substrate is designed to realize intelligent detection of gaseous BA concentrations assisted by a machine learning algorithm.
Collapse
Affiliation(s)
- Guoqiang Fang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Xiang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| | - Jinlei Wu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| | - Wuliji Hasi
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
18
|
Saeedi Dehaghani AH, Gharibshahi R, Mohammadi M. Synthesis and performance analysis of novel SiO 2 Janus nanoparticles for enhancing gas foam injection in oil reservoirs. Sci Rep 2025; 15:2994. [PMID: 39849042 PMCID: PMC11758065 DOI: 10.1038/s41598-025-87367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Abstract
Gas foam injection offers a viable solution to challenges faced in oil reservoirs, yet ensuring optimal foamability and stability remains a pivotal hurdle in practical field operations. This study presents a novel synthesis procedure to create silica (SiO2) Janus nanoparticles (JNPs) and examines their potential to enhance gas foam stability for enhanced oil recovery (EOR) applications. Two variations of SiO2 JNPs were synthesized via a masking procedure, employing oleic acid and ascorbic acid within a Pickering emulsion, marking a pioneering approach. These nanoparticles underwent comprehensive analysis for a deeper understanding. The investigation sought to unravel the mechanisms behind these JNPs' performance in the foam injection process, probing various operational parameters such as JNP type, concentration, and gas medium (air, CO2, and CH4) impact on surface tension reduction, foamability, and stability through static tests. Results uncovered remarkable efficiency in SiO2-oleic acid JNPs, showcasing a substantial edge in reducing surface tension compared to bare SiO2 nanoparticles. Specifically, at a concentration of 15,000 ppm, SiO2-oleic acid JNPs demonstrated a 25 mN/m greater reduction in surface tension than bare SiO2 within a CH4 medium. Notably, while the gas type had limited influence on surface tension under standard pressure, the synthesized JNPs showed superior foam stabilization in air compared to CO2 and CH4 environments. SiO2-oleic JNPs exhibited outstanding foamability, stabilizing 80% of the foam generator cell's height and remaining stable for 122 min during the EOR process. Conversely, ascorbic acid-SiO2-oleic acid JNPs displayed elevated foamability but reduced stability compared to SiO2-oleic acid JNPs. Despite achieving full height in the foam generator cell, stability was limited to 26 min in the CO2 medium.
Collapse
Affiliation(s)
| | - Reza Gharibshahi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mohammadi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
Ahmad W, Xu Y, Wu X, Adade SYSS, Chen Q. A highly structured Au-grafted nanoporous gold for surface-enhanced Raman scattering detection of ferbam. Talanta 2024; 280:126730. [PMID: 39186859 DOI: 10.1016/j.talanta.2024.126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
The expansive potential of surface-enhanced Raman scattering (SERS) has been well-established; however, the primary bottleneck hindering its routine analytical and commercial implementation is the poor signal reproducibility and challenges in substrate fabrication. Thus, the current work attempts to synthesize a scalable and reproducible nanoporous gold (npAu) decorated with gold (Au) nanoparticles to generate a highly structured Au@npAu nanocomposite. The substrate fabrication completes via three distinct routes: i) selective dealloying to form npAu on the Au film, ii) the fast deposition (i-t = -0.8 V, t = 10.0 s) of Au atoms across the npAu surface, and finally iii) the precise growth control of the generated Au@npAu by a series of by oxidation-reduction cycles (-0.03 to -0.4 V for 80.0 segments at ν = 50.0 mVs-1). The simulations of the dealloyed npAu and the final Au@npAu nanocomposite showed that the reduced interparticle spacing and ligament size in the Au@npAu nanocomposite is crucial for forming abundant "hot spot" regions with highly concentrated electromagnetic fields. The Au@npAu substrate reproducibility was assessed on 400.0 sites for SERS spectral acquisition with a relative standard deviation of 9.22 %. Furthermore, the Au@npAu was checked under different preparation batches for intra- and inter-day analysis and storage for 20.0 days with good stability. Finally, the substrate was checked for direct SERS detection of ferbam residues with a 4.34 × 10-9 mol L-1 sensitivity and examined in real samples with satisfactory recoveries (97.63 ± 1.95%-99.16 ± 0.24 %). This work offers a promising avenue towards highly reproducible, scalable and universal Au@npAu SERS substrate fabrication in diverse SERS-related applications.
Collapse
Affiliation(s)
- Waqas Ahmad
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China
| | - Yi Xu
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| | - Xiaoxiao Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China
| | | | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
20
|
Cao J, Wang Z, Jiang Y, Zhou H, Liang Q, Guo X, Wen Y, Yang H. Headspace-SERS assay for early mildewing tobacco leaves. Talanta 2024; 280:126681. [PMID: 39142128 DOI: 10.1016/j.talanta.2024.126681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Mildewed tobacco leaves seriously impact on cigarette product quality and pose a health risk to person. However, early moldy tobacco leaves are hardly found by naked eyes in the workshop. In this work, we self-assemble AuAg nanoalloys on silicon wafers to construct Si/AuAg chips. The headspace-surface enhanced Raman scattering (SERS) protocol is developed to monitor volatile 1,2-dichloro-3-methoxybenzene (2,3-DCA) and 2,4,6-trichloroanisole (2,4,6-TCA) released from postharvest tobacco. Consequently, the visualization of the SERS peak at 1592 cm-1 assigned to ν(CC) after headspace collection for 10 min and the SERS intensity ratio of 1054 and 1035 cm-1 from 2,3-DCA and 2,4,6-TCA less than 0.5 could be used as indicators to predict early moldy tobacco. Additionally, with headspace collection time prolonging to 2 h, a SERS band at 682 cm-1 due to ν(CCl) of 2,4,6-TCA occurs, confirming the mildew of leaves. The headspace-SERS protocol paves a path for rapid and on-site inspection of the quality of tobacco leaves and cigarettes during storage with a portable Raman system.
Collapse
Affiliation(s)
- Jiaying Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhiguo Wang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, Hunan, 410007, China
| | - Yuning Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Huimin Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiuju Liang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, Hunan, 410007, China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
21
|
Hu M, Zhu K, Wei J, Yang K, Wu L, Zong S, Wang Z. Silk fibroin-based wearable SERS biosensor for simultaneous sweat monitoring of creatinine and uric acid. Biosens Bioelectron 2024; 265:116662. [PMID: 39180829 DOI: 10.1016/j.bios.2024.116662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/13/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Sweat biomarkers have the potential to offer valuable clinical insights into an individual's health and disease condition. Current sensors predominantly utilize enzymes and antibodies as biometric components to measure biomarkers present in sweat quantitatively. However, enzymes and antibodies are susceptible to interference by environmental factors, which may affect the performance of the sensor. Herein, we present a wearable microfluidic surface-enhanced Raman scattering (SERS) biosensor that enables the non-invasive and label-free detection of biomarkers in sweat. Concretely, we developed a bimetallic self-assembled anti-opal array structure with uniform hot spots, enhanced the Raman scattering effect, and integrated it into a silk fibroin-based sensing patch. Utilizing a silk fibroin substrate in the wearable SERS sensor imparts desirable properties such as softness, breathability, and biocompatibility, which enables the sensor to establish close contact with the skin without causing chemical or physical irritation. In addition, introducing microfluidic channels enables the controlled and high temporal resolution management of sweat, facilitating more efficient sweat collection. The proposed label-free SERS sensor can offer chemical 'fingerprint' information, enabling the identification of sweat analytes. As an illustration of the feasibility, we have effectively monitored the creatinine and uric acid levels in sweat. This study presents a versatile and highly sensitive approach for the simultaneous detection of biomarkers in human sweat, showcasing significant potential for application in point-of-care monitoring.
Collapse
Affiliation(s)
- Mengsu Hu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Jinxiu Wei
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
22
|
Feng Z, Jia Y, Cui H. Engineering the surface roughness of the gold nanoparticles for the modulation of LSPR and SERS. J Colloid Interface Sci 2024; 672:1-11. [PMID: 38823218 DOI: 10.1016/j.jcis.2024.05.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
In this work, we reported that by using a strong thiol ligand as the morphology-directing reagent, a series of Au nanoparticles with plate-like surface sub-structures could be successfully obtained via a one-pot seedless synthesis. The size and the density of the plates on the surface of Au can be readily tuned with the amount of the thiol ligand, resembling different roughness of the surface. Arising from the different surface roughness, the localized surface plasmon resonance (LSPR) of these shape and morphological alike Au nanoparticles can be continuously tuned within the visible-NIR region. The broad LSPR absorptions and feasible tunability make the Au nanoparticles suitable candidate for plasmonic-related applications. Interestingly, huge SERS enhancement was simultaneously achieved based on the specific surface roughness. Our results demonstrate the great potentials for tuning the LSPR and SERS of Au nanostructures through the engineering of the surface morphologies, which would assist for the design, synthesis, and applications of Au-based plasmonic nanomaterials in various fields.
Collapse
Affiliation(s)
- Ziqi Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Yun Jia
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Hongyou Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
23
|
Liu YN, Li JJ, Weng GJ, Zhu J, Zhao JW. Reliable detection of malachite green by self-assembled SERS substrates based on gold-silicon heterogeneous nano pineapple structures. Food Chem 2024; 451:139454. [PMID: 38703725 DOI: 10.1016/j.foodchem.2024.139454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/31/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Morphology regulation of heterodimer nanoparticles and the use of their asymmetric features for further practical applications are crucial because of the rich optical properties and various combinations of heterodimers. This work used silicon to asymmetrically wrap half of a gold sphere and grew gold branches on the bare gold surface to form heterogeneous nano pineapples (NPPs) which can effectively improve Surface-enhanced Raman scattering (SERS) properties through chemical enhancement and lightning-rod effect respectively. The asymmetric structures of NPPs enabled them to self-assemble into the monolayer membrane with consistent branch orientation. The prepared substrate had high homogeneity and better SERS ability than disorganized substrates, and achieved reliable detection of malachite green (MG) in clams with a detection limit of 7.8 × 10-11 M. This work provided a guide to further revise the morphology of heterodimers and a new idea for the use of asymmetric dimers for practically photochemical and biomedical sensing.
Collapse
Affiliation(s)
- Yu-Ning Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
24
|
Zhou T, Zhu K, Yang Z, Qian Z, Zong S, Cui Y, Wang Z. Chemically Powered Nanomotors with Magnetically Responsive Function for Targeted Delivery of Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311207. [PMID: 38751193 DOI: 10.1002/smll.202311207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/29/2024] [Indexed: 10/01/2024]
Abstract
Janus structure plays a crucial role in achieving chemically driven nanomotors with exceptional motion performance. However, Janus-structured chemically driven nanomotors with magnetic responsiveness are commonly fabricated by sputtering metal films. In the study, a self-assembly technique is employed to asymmetrically modify the surfaces of magnetic silica (SiO2@Fe3O4) nanoparticles with platinum nanoparticles, resulting in the formation of this kind nanomotors. Compared to platinum film, platinum nanoparticles exhibit a larger surface area and a higher catalytic activity. Hence, the nanomotors demonstrate improved diffusion capabilities at a significantly lower concentration (0.05%) of hydrogen peroxide (H2O2). Meanwhile, exosomes have gained attention as a potential tool for the efficient delivery of biological therapeutic drugs due to their biocompatibility. However, the clinical applications of exosomes are limited by their restricted tropism. The previously obtained nanomotors are utilized to deliver exosomes, greatly enhancing its targetability. The drug doxorubicin (DOX) is subsequently encapsulated within exosomes, acting as a representative drug model. Under the conditions of H2O2 concentration at the tumor site, the exosomes exhibited a significantly enhanced rate of entry into the breast cancer cells. The utilization of the nanomotors for exosomes presents a novel approach in the development of hybrid chemically and magnetically responsive nanomotors.
Collapse
Affiliation(s)
- Tong Zhou
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Zhaoyan Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Ziting Qian
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
25
|
Fang G, Hasi W, Lin X, Han S. Automated identification of pesticide mixtures via machine learning analysis of TLC-SERS spectra. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134814. [PMID: 38850932 DOI: 10.1016/j.jhazmat.2024.134814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Identification of components in pesticide mixtures has been a major challenge in spectral analysis. In this paper, we assembled monolayer Ag nanoparticles on Thin-layer chromatography (TLC) plates to prepare TLC-Ag substrates with mixture separation and surface-enhanced Raman scattering (SERS) detection. Spectral scans were performed along the longitudinal direction of the TLC-Ag substrate to generate SERS spectra of all target analytes on the TLC plate. Convolutional neural network classification and spectral angle similarity machine learning algorithms were used to identify pesticide information from the TLC-SERS spectra. It was shown that the proposed automated spectral analysis method successfully classified five categories, including four pesticides (thiram, triadimefon, benzimidazole, thiamethoxam) as well as a blank TLC-Ag data control. The location of each pesticide on the TLC plate was determined by the intersection of the information curves of the two algorithms with 100 % accuracy. Therefore, this method is expected to help regulators understand the residues of mixed pesticides in agricultural products and reduce the potential risk of agricultural products to human health and the environment.
Collapse
Affiliation(s)
- Guoqiang Fang
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450018, China
| | - Wuliji Hasi
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450018, China.
| | - Xiang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
| | - Siqingaowa Han
- Department of Combination of Mongolian Medicine and Western Medicine Stomatology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028043, China
| |
Collapse
|
26
|
Zhao H, Cui X, Zhang P, Zhou M, Liu C, Shi X, Ma J. Surface-Enhanced Raman Spectroscopy Detection for Fenthion Pesticides Based on Gold Molecularly Imprinted Polymer Solid-State Substrates. APPLIED SPECTROSCOPY 2024; 78:851-862. [PMID: 38767085 DOI: 10.1177/00037028241253860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Current label-free surface-enhanced Raman spectroscopy (SERS) assay for the detection and analysis of organophosphorus pesticides has achieved initial success, but the application still faces constraints of substrate portability and specificity. To this end, this paper demonstrates a method for portable, rapid, and specific detection of low concentrations of fenthion pesticides based on a solid substrate of gold nanoparticle monolayers combined with molecularly imprinted polymers (MIPs). The nano-monolayers were transferred to the surface of mercapto-silicon wafers by interfacial self-assembly technique to form a stable connection with S-Au bonds and, at the same time, prevent nanoparticles from dropping off during the surfactant removal process. Then, the fenthion MIPs were directly generated on the surface of the monolayer film by spin-coating with a pre-polymerization solution and ultraviolet-induced polymerization. Tests showed that the molecular imprint was able to accurately bind to fenthion, but not other molecules, in a mixture of structural analogs, achieving a low concentration detection of 10-8 mol/L. The composite substrate maintained a signal uniformity of a relative standard deviation (RSD) = 7.05% and a batch-to-batch reproducibility of RSD = 10.40%, making it a potential pathway for the extended application of SERS technology.
Collapse
Affiliation(s)
- Hang Zhao
- Optics and Optoelectronics Laboratory of Qingdao, Ocean University of China, Qingdao, China
| | - Xinyu Cui
- Optics and Optoelectronics Laboratory of Qingdao, Ocean University of China, Qingdao, China
| | - Panshuo Zhang
- Optics and Optoelectronics Laboratory of Qingdao, Ocean University of China, Qingdao, China
| | - Min Zhou
- Optics and Optoelectronics Laboratory of Qingdao, Ocean University of China, Qingdao, China
| | - Chunlin Liu
- Optics and Optoelectronics Laboratory of Qingdao, Ocean University of China, Qingdao, China
| | - Xiaofeng Shi
- Optics and Optoelectronics Laboratory of Qingdao, Ocean University of China, Qingdao, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jun Ma
- Optics and Optoelectronics Laboratory of Qingdao, Ocean University of China, Qingdao, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
27
|
Zhao YX, Liang X, Chen YL, Chen YT, Ma L, Ding SJ, Chen XB, Wang QQ. Open-Nanogap-Induced Strong Electromagnetic Enhancement in Au/AgAu Monolayer as a Stable and Uniform SERS Substrate for Ultrasensitive Detection. Anal Chem 2024; 96:8416-8423. [PMID: 38755966 DOI: 10.1021/acs.analchem.3c05797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Nanogap-based plasmonic metal nanocrystals have been applied in surface-enhanced Raman scattering detection, while the closed and insufficient electromagnetic fields as well as the nonreproducible Raman signal of the substrate greatly restrict the actual application. Herein, a highly uniform Au/AgAu monolayer with abundant nanogaps and huge electromagnetic enhancement is prepared, which shows ultrasensitive and reproducible SERS detection. Au/AgAu with an inner nanogap is first prepared based on Au nanotriangles, and the nanogap is opened from the three tips via a subsequent etching process. The open-gap Au/AgAu displays much higher SERS efficiency than Au and Au/AgAu with an inner nanogap on detecting crystal violet due to the open-gap induced electromagnetic enhancement and improved molecular absorption. Furthermore, the open-gap Au/AgAu monolayer is prepared via interfacial self-assembly, which shows further improved SERS due to the dense and strong hotspots in the nanocavities induced by the electromagnetic coupling between adjacent open gaps. The monolayer possesses excellent signal stability, uniformity, and reproducibility. The analytic enhancement factor and relative standard deviation reach to 2.12 × 108 and 4.65% on detecting crystal violet, respectively. Moreover, the monolayer achieves efficient detection of thiram in apple juice, biphenyl-4-thiol, 4-mercaptobenzoic, melamine, and a mixed solution of four different molecules, showing great promise in practical detection.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xi Liang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Yan-Li Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Yu-Ting Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, P. R. China
| | - Xiang-Bai Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Qu-Quan Wang
- Department of Physics, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
28
|
Gu Z, Zhao D, He H, Wang Z. SERS-Based Microneedle Biosensor for In Situ and Sensitive Detection of Tyrosinase. BIOSENSORS 2024; 14:202. [PMID: 38667195 PMCID: PMC11047863 DOI: 10.3390/bios14040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Tyrosinase (TYR) emerges as a key enzyme that exerts a regulatory influence on the synthesis of melanin, thereby assuming the role of a critical biomarker for the detection of melanoma. Detecting the authentic concentration of TYR in the skin remains a primary challenge. Distinguished from ex vivo detection methods, this study introduces a novel sensor platform that integrates a microneedle (MN) biosensor with surface-enhanced Raman spectroscopy (SERS) technology for the in situ detection of TYR in human skin. The platform utilized dopamine (DA)-functionalized gold nanoparticles (Au NPs) as the capturing substrate and 4-mercaptophenylboronic acid (4-MPBA)-modified silver nanoparticles (Ag NPs) acting as the SERS probe. Here, the Au NPs were functionalized with mercaptosuccinic acid (MSA) for DA capture. In the presence of TYR, DA immobilized on the MN is preferentially oxidized to dopamine quinone (DQ), a process that results in a decreased density of SERS probes on the platform. TYR concentration was detected through variations in the signal intensity emitted by the phenylboronic acid. The detection system was able to evaluate TYR concentrations within a linear range of 0.05 U/mL to 200 U/mL and showed robust anti-interference capabilities. The proposed platform, integrating MN-based in situ sensing, SERS technology, and TYR responsiveness, holds significant importance for diagnosing cutaneous melanoma.
Collapse
Affiliation(s)
- Zimeng Gu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (Z.G.); (D.Z.); (Z.W.)
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di Zhao
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (Z.G.); (D.Z.); (Z.W.)
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyan He
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (Z.G.); (D.Z.); (Z.W.)
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenhui Wang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (Z.G.); (D.Z.); (Z.W.)
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
29
|
Li WH, Li N, Zhang H, Xu Q. Interfacial Self-Assembly of Oriented Semiconductor Monolayer for Chemiresistive Sensing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38598316 DOI: 10.1021/acsami.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Semiconductor nanofilm fabrication with advanced technology is of great importance for next-generation electronics/optoelectronics. Fabrication of high-quality and perfectly oriented semiconductor thin films and integration into high-performance electronic devices with low cost and high efficiency are huge challenges. Here we exquisitely utilized the Marangoni effect to perfectly guide tin disulfide (SnS2) nanocoins into an ordered assembly in milliseconds, resulting in an uniaxial-oriented monolayer semiconductor film. Further exploration revealed that the formed "crumple zone" at the interface caused by the Marangoni force endows the nanofilm with a rapid healable capability, which can be easily transferred to arbitrary substrates. As a proof of concept, the nanocoin-monolayer was transferred onto a micro-interdigitated electrode substrate to form a high-performance chemiresistive sensor that can effectively monitor the trace amounts of toxic gases. In addition, the assembled monolayer nanofilms can be conformally printed on freeform surfaces: both flat and nonflat substrates. This efficient and low-cost Marangoni force-assisted surface self-assembly (MFA-SSA) strategy is promising for advanced microelectronics and real industrial applications.
Collapse
Affiliation(s)
- Wen-Hua Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Haobing Zhang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry, Department of Materials Science and Engineering, and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
30
|
Tian Y, Zhao L, Shen X, Shang S, Pan Y, Dong G, Huo W, Zhu D, Tang X. Self-assembled core-shell nanoparticles with embedded internal standards for SERS quantitative detection and identification of nicotine released from snus products. Front Chem 2024; 12:1348423. [PMID: 38601887 PMCID: PMC11005032 DOI: 10.3389/fchem.2024.1348423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 04/12/2024] Open
Abstract
Surface enhanced Raman spectroscopy (SERS) is a unique analytical technique with excellent performance in terms of sensitivity, non-destructive detection and resolution. However, due to the randomness and poor repeatability of hot spot distribution, SERS quantitative analysis is still challenging. Meanwhile, snus is a type of tobacco product that can release nicotine and other components in the mouth without burning, and the rapid detection technique based on SERS can reliably evaluate the amount of nicotine released from snus, which is of great significance for understanding its characteristics and regulating its components. Herein, the strategy was proposed to solve the feasibility of SERS quantitative detection based on self-assembled core-shell nanoparticles with embedded internal standards (EIS) due to EIS signal can effectively correct SERS signal fluctuations caused by different aggregation states and measurement conditions, thus allowing reliable quantitative SERS analysis of targets with different surface affinity. By means of process control, after the Au nanoparticles (Au NPs) were modified with 4-Mercaptobenzonitrile (4-MBN) as internal standard molecules, Ag shell with a certain thickness was grown on the surface of the AuNP@4-MBN, and then the Au@4-MBN@Ag NPs were used to regulate and control the assembly of liquid-liquid interface. The high-density nano-arrays assembled at the liquid-liquid interface ensure high reproducibility as SERS substrates, and which could be used for SERS detection of nicotine released from snus products. In addition, time-mapping research shows that this method can also be used to dynamically monitor the release of nicotine. Moreover, such destruction-free evaluation of the release of nicotine from snus products opens up new perspectives for further research about the impact of nicotinoids-related health programs.
Collapse
Affiliation(s)
- Yongfeng Tian
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
- Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Xiaofeng Shen
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Shanzhai Shang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Yonghua Pan
- Hongta Tobacco (Group) Co., Ltd., Yuxi, China
| | - Gaofeng Dong
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Wang Huo
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Donglai Zhu
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Xianghu Tang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
31
|
Li Y, Jiang L, Yu Z, Jiang C, Zhang F, Jin S. SPRi/SERS dual-mode biosensor based on ployA-DNA/ miRNA/AuNPs-enhanced probe sandwich structure for the detection of multiple miRNA biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123664. [PMID: 38029598 DOI: 10.1016/j.saa.2023.123664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
MicroRNA (miRNA) has broad application prospects in the early detection of various cancers. In this work, a SPRi/SERS dual-mode biosensor was developed on the same gold chip by AuNPs as the reinforcing medium. High throughput and sensitivity detection of three typical cervical cancer markers miRNA21, miRNA124 and miRNA143 were achieved based on the sandwich structure of polyA blocks-DNA capture probe/target miRNA/AuNPs-assistant probe or SERS nanoprobes. AuNPs greatly improved the SPR response due to mass increase and more sensitive refractive index changes. Meanwhile, due to the LSPR effect of AuNPs, the signal of SERS nanoprobe can be amplified. The miRNAs were detected in serum to verify its practicality. SPRi achieved detection of three miRNAs simultaneously. LODs were 6.3 fM, 5.3 fM and 4.6 fM, respectively, and wide dynamic response range of 500 pM-10 nM. While SERS assay ensured high sensitivity with LODs as low as 1 fM, 0.8 fM and 1.2 fM, respectively, and with the recoveries in the range of 90.0 %-100.2 %. The redundant detection signals of the two modes can provide more reliable data to prevent false positive or false negative detection, and have great application prospects in detection of cancer-related nucleic acids in early stage of disease.
Collapse
Affiliation(s)
- Yifan Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Li Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Zizhen Yu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Cailing Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Fei Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
32
|
Qu C, Geng Y, Ding Z, Li Y, Jiang H, Su M, Liu H. In Situ Spatiotemporal SERS Profiling of Bacterial Quorum Sensing by Hierarchical Hydrophobic Plasmonic Arrays in Agar Medium. Anal Chem 2024; 96:2396-2405. [PMID: 38305857 DOI: 10.1021/acs.analchem.3c04299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A feedback inhibition effect of high autoinducer levels on metabolite secretion in Chromobacterium subtsugae (C. subtsugae) was evidenced by in situ spatiotemporal surface-enhanced Raman spectroscopy (SERS) profiling. The hierarchical hydrophobic plasmonic array in agar medium is structured by oil/water/oil (OL/W/OH) triphasic interfacial self-assembly. The hydrophobic layer acts as a "door curtain" to selectively permit adsorption of a quorum sensing (QS)-regulated fat-soluble metabolite, i.e., violacein (Vio), and significantly blocks nonspecific adsorption of water-soluble proteins, etc. The SERS profiling clearly evidences that the diffusion of N-hexanoyl-l-homoserine lactone (C6-HSL) in agar medium quickly triggers the initial synthesis of Vio in C. subtsugae CV026 but surprisingly inhibits the intrinsic synthesis of Vio in C. subtsugae ATCC31532. The latter negative response might be related to the VioS repressor of ATCC31532, which negatively controls violacein production without influencing the expression of the CviI/R QS system. Moreover, two sender-receiver systems are constructed by separately coculturing CV026 or ATCC31532 with Hafnia alvei H4 that secretes large amounts of C6-HSL. Expectedly, the cocultivation similarly triggers the initial synthesis of Vio in CV026 but seems to have a quite weak negative effect on the intrinsic synthesis in ATCC31532. In fact, the negative regulation in ATCC31532 might be affected by a diffusion-dependent concentration effect. The H4 growth and its secretion of C6-HSL are a slow and continuous process, thereby avoiding the gathering of local high concentrations. Overall, our study put forward an in situ SERS strategy as an alternative to traditional bioluminescent tools for highly sensitively analyzing the spatiotemporal communication and cooperation in live microbial colonies.
Collapse
Affiliation(s)
- Cheng Qu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yuchuang Geng
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Zhongxiang Ding
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yuzhu Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hao Jiang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
33
|
Wang P, Liang Z, Li Z, Wang D, Ma Q. Plasmonic nanocavity-modulated electrochemiluminescence sensor for gastric cancer exosomal miRNA detection. Biosens Bioelectron 2024; 245:115847. [PMID: 37995625 DOI: 10.1016/j.bios.2023.115847] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Plasmonic nanocavity possessing highly light field confinement and electromagnetic field enhancement can concentrate and enhance the luminescence signal. The plasmonic nanocavity has the great potential value in biosensing research and improve analytical sensitivity. In this work, we constructed a plasmonic nanocavity between circular Au nanoplate-film and spherical Au nanoparticle with tetrahedral DNA nanostructures. The nanocavity structure can regulate the local density of optical states and provide the field restriction to enhance the spontaneous ECL radiation of PEDOT-S dots. Additionally, Au nanoparticle acted as nanoantenna which localized and modulated ECL to directional emission. Because the plasmonic nanocavity effectively collected and redistributed ECL signal, the emission was enhanced by 5.9 times with polarized characteristics. The proposed plasmonic nanocavity-based ECL sensor was further used to detect exosomal miRNA-223-3p in ascites. The detection results indicated the novel sensing strategy can assist early diagnosis of peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dongyu Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
34
|
Cui F, Wang P, Liu K, Guo Y, Ma Q, He Y. Cu nanoclusters/nano-vesicle-based confinement-induced electrochemiluminescence strategy for miRNA-145 detection. SENSORS AND ACTUATORS B: CHEMICAL 2024; 401:134910. [DOI: 10.1016/j.snb.2023.134910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
|
35
|
Chen L, Guo H, Wang C, Chen B, Sassa F, Hayashi K. Two-Dimensional SERS Sensor Array for Identifying and Visualizing the Gas Spatial Distributions of Two Distinct Odor Sources. SENSORS (BASEL, SWITZERLAND) 2024; 24:790. [PMID: 38339509 PMCID: PMC10857130 DOI: 10.3390/s24030790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The spatial distribution of gas emitted from an odor source provides valuable information regarding the composition, size, and localization of the odor source. Surface-enhanced Raman scattering (SERS) gas sensors exhibit ultra-high sensitivity, molecular specificity, rapid response, and large-area detection. In this paper, a SERS gas sensor array was developed for visualizing the spatial distribution of gas evaporated from benzaldehyde and 4-ethylbenzaldehyde odor sources. The SERS spectra of the gas were collected by scanning the sensor array using an automatic detection system. The non-negative matrix factorization algorithm was employed to extract feature and concentration information at each spot on the sensor array. A heatmap image was generated for visualizing the gas spatial distribution using concentration information. Gaussian fitting was applied to process the image for localizing the odor source. The size of the odor source was estimated using the processed image. Moreover, the spectra of benzaldehyde, 4-ethylbenzaldehyde, and their gas mixture were simultaneously detected using one SERS sensor array. The feature information was recognized using a convolutional neural network with an accuracy of 98.21%. As a result, the benzaldehyde and 4-ethylbenzaldehyde odor sources were identified and visualized. Our research findings have various potential applications, including odor source localization, environmental monitoring, and healthcare.
Collapse
Affiliation(s)
- Lin Chen
- Department of Information Science, Joint Graduate School of Mathematics for Innovation, Kyushu University, Fukuoka 819-0395, Japan
| | - Hao Guo
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan; (H.G.); (C.W.); (F.S.)
| | - Cong Wang
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan; (H.G.); (C.W.); (F.S.)
| | - Bin Chen
- Chongqing Key Laboratory of Non-Linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China;
| | - Fumihiro Sassa
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan; (H.G.); (C.W.); (F.S.)
| | - Kenshi Hayashi
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan; (H.G.); (C.W.); (F.S.)
| |
Collapse
|
36
|
Weng G, Yang J, Li J, Zhu J, Zhao J. Ag triangle nanoplates assembled on PVC/SEBS membrane as flexible SERS substrates for skin cortisol sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123154. [PMID: 37478705 DOI: 10.1016/j.saa.2023.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Surface-enhanced Raman scattering (SERS) based on rigid substrates has been widely used in biomedical detection due to its high sensitivity and specificity. However, the tedious operation steps for preparing SERS rigid substrates limited their applications in real-world detection. Compared with general rigid substrate, the flexible substrate has the advantages of simple preparation and easy portability, which are suitable for rapid, wearable and personalized detection in the field of point-of-care test. Herein, the flexible SERS substrates employing copolymer were fabricated and used for detection of skin cortisol, a biomarker for evaluating psychological stress in sweat. Silver triangle nanoplates with sharp corner were used as enhanced particles, and transferred to polyvinyl chloride/styrene-ethylene-butene-styrene copolymer (PVC/SEBS) film through three-phase interface self-assembly. By adjusting the size of silver nanoparticles, the ratio of PVC to SEBS in the polymer film, and the number of transfers of self-assembled silver films, the enhancement effect of the flexible SERS substrate was maximized. In addition, functionalization of the flexible SERS substrate with cortisol antibodies is used to achieve specific detection of cortisol on the skin surface. Under the optimal conditions, the Raman peak intensities at 1268 and 1500 cm-1 of the cortisol had a good linear relationship with the logarithm of its concentration in the range of 10-7 to 10-3 M, and the detection limits were 5.47 × 10-8 M and 5.51 × 10-8 M, respectively. The flexible silver triangle nanoplates SERS substrate constructed by self-assembly in the three-phase interface has the characteristics of good specificity and high sensitivity, which has potential for transdermal cortisol wearable detection, providing a feasible method for the rapid evaluating psychological stress level.
Collapse
Affiliation(s)
- Guojun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jianming Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Junwu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| |
Collapse
|
37
|
Wang Z, Zhang L, Sun L, Bao S, Liu D, Li H, Liu Y. Self-assembly flexible SERS imprinted membrane based on Ag nanocubes for selective detection of microcystin-LR. Mikrochim Acta 2023; 191:19. [PMID: 38087094 DOI: 10.1007/s00604-023-06096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Silver nanocubes monolayer-modified polydimethylsiloxane (Ag NC/PDMS) flexible SERS substrates have been prepared by a three-phase interface self-assembly procedure. The combination of this method with membrane technology brings nanoparticles in close proximity, densely, and regularly arranged in monolayers over a large area, leading to excellent SERS properties. Considering the complexity of practical detection, molecular imprinted polymers (MIPs) were anchored on the surface of SERS substrate and applied to selective detection of microcystin-LR (MC-LR). It is worth mentioning that the SERS imprinted membranes (AP-MIMs) were still clearly detected at a concentration of 0.1 µg·L-1 of MC-LR in drinking water, and the detection limit was as low as 0.0067 µg·L-1. The substrate exhibited excellent uniformity with a relative standard deviation (RSD) of 6.1%. In the presence of interference molecules, AP-MIMs exhibited excellent selectivity for MC-LR. Furthermore, in the spiking and recovery tests of practical lake water samples, the method showed excellent recoveries ranging from 96.47 to 105.31%. It has been demonstrated that the prepared AP-MIMs can be applied to sensitive and specific detection of trace amounts of MC-LR in drinking water.
Collapse
Affiliation(s)
- Zedong Wang
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Zhong Shan Institute of Changchun University of Science and Technology, Zhongshan, 528437, Guangdong, China
| | - Liang Zhang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130022, China
| | - Lian Sun
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130022, China
| | - Siqi Bao
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Dajun Liu
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhong Shan Institute of Changchun University of Science and Technology, Zhongshan, 528437, Guangdong, China.
| | - Hongji Li
- Zhong Shan Institute of Changchun University of Science and Technology, Zhongshan, 528437, Guangdong, China.
- College of Engineering, Jilin Normal University, Siping, 136000, China.
| | - Yuming Liu
- Zhong Shan Institute of Changchun University of Science and Technology, Zhongshan, 528437, Guangdong, China.
| |
Collapse
|
38
|
Zhou L, Vestri A, Marchesano V, Rippa M, Sagnelli D, Picazio G, Fusco G, Han J, Zhou J, Petti L. The Label-Free Detection and Identification of SARS-CoV-2 Using Surface-Enhanced Raman Spectroscopy and Principal Component Analysis. BIOSENSORS 2023; 13:1014. [PMID: 38131774 PMCID: PMC10741931 DOI: 10.3390/bios13121014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The World Health Organization (WHO) declared in a May 2023 announcement that the COVID-19 illness is no longer categorized as a Public Health Emergency of International Concern (PHEIC); nevertheless, it is still considered an actual threat to world health, social welfare and economic stability. Consequently, the development of a convenient, reliable and affordable approach for detecting and identifying SARS-CoV-2 and its emerging new variants is crucial. The fingerprint and signal amplification characteristics of surface-enhanced Raman spectroscopy (SERS) could serve as an assay scheme for SARS-CoV-2. Here, we report a machine learning-based label-free SERS technique for the rapid and accurate detection and identification of SARS-CoV-2. The SERS spectra collected from samples of four types of coronaviruses on gold nanoparticles film, fabricated using a Langmuir-Blodgett self-assembly, can provide more spectroscopic signatures of the viruses and exhibit low limits of detection (<100 TCID50/mL or even <10 TCID50/mL). Furthermore, the key Raman bands of the SERS spectra were systematically captured by principal component analysis (PCA), which effectively distinguished SARS-CoV-2 and its variant from other coronaviruses. These results demonstrate that the combined use of SERS technology and PCA analysis has great potential for the rapid analysis and discrimination of multiple viruses and even newly emerging viruses without the need for a virus-specific probe.
Collapse
Affiliation(s)
- Lu Zhou
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (L.Z.); (A.V.); (V.M.); (M.R.); (D.S.)
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Ambra Vestri
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (L.Z.); (A.V.); (V.M.); (M.R.); (D.S.)
| | - Valentina Marchesano
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (L.Z.); (A.V.); (V.M.); (M.R.); (D.S.)
| | - Massimo Rippa
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (L.Z.); (A.V.); (V.M.); (M.R.); (D.S.)
| | - Domenico Sagnelli
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (L.Z.); (A.V.); (V.M.); (M.R.); (D.S.)
| | - Gerardo Picazio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (G.P.); (G.F.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (G.P.); (G.F.)
| | - Jiaguang Han
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Jun Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Lucia Petti
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (L.Z.); (A.V.); (V.M.); (M.R.); (D.S.)
| |
Collapse
|
39
|
Saeedi Dehaghani AH, Gharibshahi R, Mohammadi M. Utilization of synthesized silane-based silica Janus nanoparticles to improve foam stability applicable in oil production: static study. Sci Rep 2023; 13:18652. [PMID: 37903908 PMCID: PMC10616180 DOI: 10.1038/s41598-023-46030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
This study investigated the effect of silane-based silica (SiO2) Janus nanoparticles (JNPs) on stabilizing the foam generated by different types of gases. Two types of SiO2 JNPs were synthesized through surface modification using HMDS and APTS silane compounds. Static analyses were conducted to examine the impact of different concentrations of the synthesized nanoparticles in various atmospheres (air, CO2, and CH4) on surface tension, foamability, and foam stability. The results indicated that the synthesized SiO2 JNPs and bare SiO2 nanoparticles exhibited nearly the same ability to reduce surface tension at ambient temperature and pressure. Both of these nanoparticles reduced the surface tension from 71 to 58-59 mN m-1 at 15,000 ppm and 25 °C. While bare SiO2 nanoparticles exhibited no foamability, the synthesis of SiO2 JNPs significantly enhanced their ability to generate and stabilize gas foam. The foamability of HMDS-SiO2 JNPs started at a higher concentration than APTS-SiO2 JNPs (6000 ppm compared to 4000 ppm, respectively). The type of gas atmosphere played a crucial role in the efficiency of the synthesized JNPs. In a CH4 medium, the foamability of synthesized JNPs was superior to that in air and CO2. At a concentration of 1500 ppm in a CH4 medium, HMDS-SiO2 and APTS-SiO2 JNPs could stabilize the generated foam for 36 and 12 min, respectively. Due to the very low dissolution of CO2 gas in water at ambient pressure, the potential of synthesized JNPs decreased in this medium. Finally, it was found that HMDS-SiO2 JNPs exhibited better foamability and foam stability in all gas mediums compared to APTS-SiO2 JNPs for use in oil reservoirs. Also, the optimal performance of these JNPs was observed at a concentration of 15,000 ppm in a methane gas medium.
Collapse
Affiliation(s)
| | - Reza Gharibshahi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mohammadi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
40
|
Xie T, Li P, Wang J, Dong R, Yang L. Three-Phase Catassembly of 10 nm Au Nanoparticles for Sensitive and Stable Surface-Enhanced Raman Scattering Detection. Anal Chem 2023; 95:15293-15301. [PMID: 37800860 DOI: 10.1021/acs.analchem.3c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Interfacial self-assembly with the advantage of providing large-area, high-density plasmonic hot spots is conducive to achieving high sensitivity and stable surface-enhanced Raman scattering (SERS) sensing. However, rapid and simple assembly of highly repeatable large-scale multilayers with small nanoparticles remains a challenge. Here, we proposed a catassembly approach, where the "catassembly" means the increase in the rate and control of nanoparticle assembly dynamics. The catassembly approach was dropping heated Au sols onto oil chloroform (CHCl3), which triggers a rapid assembly of plasmonic multilayers within 15 s at the oil-water-air (O/W/A) interface. A mixture of heated sol and CHCl3 constructs a continuous liquid-air interfacial tension gradient; thus, the plasmonic multilayer film can form rapidly without adding functional ligands. Also, the dynamic assembly process of the three-phase catassembly ranging from cluster to interfacial film formation was observed through experimental characterization and COMSOL simulation. Importantly, the plasmonic multilayers of 10 nm Au NPs for SERS sensing demonstrated high sensitivity with the 1 nM level for crystal violet molecules and excellent stability with an RSD of about 10.0%, which is comparable to the detection level of 50 nm Au NPs with layer-by-layer assembly, as well as breaking the traditional and intrinsic understanding of small particles of plasmon properties. These plasmonic multilayers of 10 nm Au NPs through the three-phase catassembly method illustrate high SERS sensitivity and stability, paving the way for small-nanoparticle SERS sensing applications.
Collapse
Affiliation(s)
- Tao Xie
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jiazheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
41
|
Chen Y, Jiang C, Huang F, Yu Z, Jiang L. Efficient interfacial self-assembled MXene/Ag NPs film nanocarriers for SERS-traceable drug delivery. Anal Bioanal Chem 2023; 415:5379-5389. [PMID: 37392214 DOI: 10.1007/s00216-023-04813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023]
Abstract
Combining the unique advantages of two-dimensional transition metal carbon/nitrogen compounds (MXene) and the excellent surface-enhanced Raman scattering (SERS) performance of noble metal materials, MXene/Ag NPs films were proposed as nanocarriers for SERS-traceable drug delivery. The films were prepared by two-step self-assembly on positively charged silicon wafers using virtue of the high evaporation of ethyl acetate, the Marangoni effect, and an oil/water/oil three-phase system. With 4-mercaptobenzoic acid (4-MBA) as the probe molecule, the SERS detection limit was 10-8 M and had shown a good linear relationship in the range of 10-8-10-3 M. Simultaneously, the film had good uniformity, repeatability, and stability. When Ti3C2Tx/Ag NPs films were used as nanocarriers, the anticancer drug doxorubicin (DOX) was loaded onto the surface through 4-MBA, and the tracking and monitoring were realized by SERS. The addition of glutathione (GSH) triggered the thiol exchange reaction, resulting in the shedding of 4-MBA from the surface of the film, which indirectly achieved the efficient release of DOX. Furthermore, the loading of DOX and the drug release effect triggered by GSH maintained a certain stability in serum, which provided a potential possibility for the subsequent loading and release of drugs by films with three-dimensional structures as scaffolds in biological therapy. Self-assembled MXene/Ag NPs film nanocarriers for SERS-traceable drug delivery and GSH-triggered high-efficiency drug release.
Collapse
Affiliation(s)
- Yi Chen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Cailing Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Feixiang Huang
- Department of TCM Gynecology, Hangzhou Women's Hospital, Hangzhou, 310008, People's Republic of China.
| | - Zizhen Yu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Li Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
42
|
Fang G, Hasi W, Sha X, Cao G, Han S, Wu J, Lin X, Bao Z. Interfacial Self-Assembly of Surfactant-Free Au Nanoparticles as a Clean Surface-Enhanced Raman Scattering Substrate for Quantitative Detection of As 5+ in Combination with Convolutional Neural Networks. J Phys Chem Lett 2023; 14:7290-7298. [PMID: 37560985 DOI: 10.1021/acs.jpclett.3c01969] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a highly sensitive tool in the field of environmental testing. However, the detection and accurate quantification of weakly adsorbed molecules (such as heavy metal ions) remain a challenge. Herein, we combine clean SERS substrates capable of capturing heavy metal ions with convolutional neural network (CNN) algorithm models for quantitative detection of heavy metal ions in solution. The SERS substrate consists of surfactant-free Au nanoparticles (NPs) and l-cysteine molecules. As plasmonic nanobuilt blocks, surfactant-free Au NPs without physical or chemical barriers are more accessible to target molecules. The amino and carboxyl groups in the l-cysteine molecule can chelate As5+ ions. The CNN algorithm model is applied to quantify and predict the concentration of As5+ ions in samples. The results demonstrated that this strategy allows for fast and accurate prediction of As5+ ion concentrations, and the determination coefficient between the predicted and actual values is as high as 0.991.
Collapse
Affiliation(s)
- Guoqiang Fang
- National Key Laboratory of Science and Technology on Tuneable Laser, Harbin Institute of Technology, Harbin, 150080, China
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Wuliji Hasi
- National Key Laboratory of Science and Technology on Tuneable Laser, Harbin Institute of Technology, Harbin, 150080, China
| | - Xuanyu Sha
- National Key Laboratory of Science and Technology on Tuneable Laser, Harbin Institute of Technology, Harbin, 150080, China
| | - Guangxu Cao
- Research Center for Space Control and Inertial Technology, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Siqingaowa Han
- Department of Combination of Mongolian Medicine and Western Medicine Stomatology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028043, China
| | - Jinlei Wu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Xiang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Zhouzhou Bao
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
43
|
Cai YY, Choi YC, Kagan CR. Chemical and Physical Properties of Photonic Noble-Metal Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2108104. [PMID: 34897837 DOI: 10.1002/adma.202108104] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Colloidal noble metal nanoparticles (NPs) are composed of metal cores and organic or inorganic ligand shells. These NPs support size- and shape-dependent plasmonic resonances. They can be assembled from dispersions into artificial metamolecules which have collective plasmonic resonances originating from coupled bright and dark optical electric and magnetic modes that form depending on the size and shape of the constituent NPs and their number, arrangement, and interparticle distance. NPs can also be assembled into extended 2D and 3D metamaterials that are glassy thin films or ordered thin films or crystals, also known as superlattices and supercrystals. The metamaterials have tunable optical properties that depend on the size, shape, and composition of the NPs, and on the number of NP layers and their interparticle distance. Interestingly, strong light-matter interactions in superlattices form plasmon polaritons. Tunable interparticle distances allow designer materials with dielectric functions tailorable from that characteristic of an insulator to that of a metal, and serve as strong optical absorbers or scatterers, respectively. In combination with lithography techniques, these extended assemblies can be patterned to create subwavelength NP superstructures and form large-area 2D and 3D metamaterials that manipulate the amplitude, phase, and polarization of transmitted or reflected light.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
44
|
Dong J, Zhou W, Yang C, Wu H, Han Q, Zhang C, Gao W, Yan X, Sun M. Preparation of a Three-Dimensional Composite Structure Based on a Periodic Au@Ag Core-Shell Nanocube with Ultrasensitive Surface-Enhanced Raman Scattering for Rapid Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37276612 DOI: 10.1021/acsami.3c05488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The absorption and scattering frequencies of surface plasmon resonance can be selectively adjusted by changing the morphology, size, structure, arrangement, and gap between noble metal nanoparticles so that the local electromagnetic field on the substrate surface can be further enhanced. This change will promote and popularize surface-enhanced Raman spectroscopy. This paper reports the research results and improvement scheme of surface enhanced Raman scattering (SERS) activity of silver-coated gold nanocubed/organism (Au@Ag/CW NCs) prepared by three-phase self-assembly. In the experiment, the uppermost oil phase in the three-phase self-assembly process was optimized as ethanol and n-hexane solution containing a specific concentration of a probe molecule rhodamine 6G or aspartame. The probe molecules were directly self-assembled on the surface of the composite substrate to avoid the possible loss and pollution during immersion and preservation and achieve the purpose of rapid detection. The results show that the Au@Ag/CW NC array substrate is a periodic cubic ring structure. The sensitivity, uniformity, reproducibility, and stability of composite Au@Ag/CW NC array substrates are verified by comparing the Raman activities of various substrates. The feasibility of using the substrate to realize rapid SERS detection, compared with the advantages and disadvantages of the traditional soaking method, proved that the prepared substrate and improvement direction have excellent potential for application and development prospects in the field of rapid food additive detection.
Collapse
Affiliation(s)
- Jun Dong
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Wanting Zhou
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Chengyuan Yang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Haoran Wu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Qingyan Han
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Chengyun Zhang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Wei Gao
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Xuewen Yan
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
45
|
Wu L, Chen L, Qian Z, Wang T, Dong Q, Zhang Y, Zong S, Cui Y, Wang Z. A 3D-printed SERS bionic taster for dynamic tumor metabolites detection. Talanta 2023; 264:124766. [PMID: 37285698 DOI: 10.1016/j.talanta.2023.124766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The variation of tumor-associated metabolites in extracellular microenvironment timely reflects the development, the progression and the treatment of cancers. Conventional methods for metabolite detection lack the efficiency to grasp the dynamic metabolic alterations. Herein, we developed a SERS bionic taster which enabled real-time analysis of extracellular metabolites. The instant information of cell metabolism was provided by the responsive Raman reporters, which experienced SERS spectral changes upon metabolite activation. Such a SERS sensor was integrated into a 3D-printed fixture which fits the commercial-standard cell culture dishes, allowing in-situ acquisition of the vibrational spectrum. The SERS taster can not only accomplish simultaneous and quantitative analysis of multiple tumor-associated metabolites, but also fulfill the dynamic monitoring of cellular metabolic reprogramming, which is expected to become a promising tool for investigating cancer biology and therapeutics.
Collapse
Affiliation(s)
- Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Lu Chen
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Ziting Qian
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Tingyu Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Qianqian Dong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Yizhi Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Nanjing 211106, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China.
| |
Collapse
|
46
|
Wu Q, Ding Q, Lin W, Weng Y, Feng S, Chen R, Chen C, Qiu S, Lin D. Profiling of Tumor Cell-Delivered Exosome by Surface Enhanced Raman Spectroscopy-Based Biosensor for Evaluation of Nasopharyngeal Cancer Radioresistance. Adv Healthc Mater 2023; 12:e2202482. [PMID: 36528342 DOI: 10.1002/adhm.202202482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Although the advancement of radiotherapy significantly improves the survival of nasopharyngeal cancer (NPC), radioresistance associated with recurrence and poor outcomes still remains a daunting challenge in the clinical scenario. Currently, effective biomarkers and convenient detection methods for predicting radioresistance have not been well established. Here, the surface-enhanced Raman spectroscopy combined with proteomics is used to firstly profile the characteristic spectral patterns of exosomes secreted from self-established NPC radioresistance cells, and reveals specific variations of proteins expression during radioresistance formation, including collagen alpha-2 (I) chain (COL1A2) that is associated with a favorable prognosis in NPC and is negatively associated with DNA repair scores and DNA repair-related genes via bioinformatic analysis. Furthermore, deep learning model-based diagnostic model is generated to accurately identify the exosomes from radioresistance group. This work demonstrates the promising potential of exosomes as a novel biomarker for predicting the radioresistance and develops a rapid and sensitive liquid biopsy method that will provide a personalized and precise strategy for clinical NPC treatment.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian, 350001, China
| | - Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Wanzun Lin
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
| | - Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
| | - Rong Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350001, China
| |
Collapse
|
47
|
Lv E, Wang J, Li J, Zhao X, Yu J, Xu S, Li Z, Man B, Xue M, Xu J, Zhang C. Nanowire-in-bowl-shaped piezoelectric cavity structure for SERS directional detection of nanoplastics less than 50 nm. OPTICS EXPRESS 2023; 31:5297-5313. [PMID: 36823814 DOI: 10.1364/oe.480898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
The accurate detection of nanoplastics is crucial due to their harmful effects on the environment and human beings. However, there is a lack of detection methods for nanoplastics smaller than 50 nm. In this research, we successfully constructed an Ag/CuO nanowire (NW)/BaTiO3@Polyvinylidene fluoride (PVDF) Bowl-shaped substrate with a nanowire-in-Bowl-shaped piezoelectric cavity structure that can modulate surface-enhanced Raman scattering (SERS) by the piezoelectric effect by the virtue of the tip effect of the CuO NW and light focusing effect of the Bowl-shaped cavity. Due to its unique nanowire-in-Bowl-shaped structure and piezoelectrically modifiable ability, nanoplastics less than 50 nm were successfully detected and quantitatively analyzed. We believe that the Ag/CuO NW/BaTiO3@PVDF Bowl-shaped substrate can provide an efficient, accurate, and feasible way to achieve qualitative and quantitative detection of nanoplastics.
Collapse
|
48
|
Wang H, Li H, Gu P, Huang C, Chen S, Hu C, Lee E, Xu J, Zhu J. Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. NANOSCALE 2023; 15:2018-2035. [PMID: 36648016 DOI: 10.1039/d2nr05821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ordered assemblies of inorganic nanoparticles (NPs) have shown tremendous potential for wide applications due to their unique collective properties, which differ from those of individual NPs. Various assembly methods, such as external field-directed assembly, interfacial assembly, template assembly, biomolecular recognition-mediated assembly, confined assembly, and others, have been employed to generate ordered inorganic NP assemblies with hierarchical structures. Among them, the external field-directed assembly method is particularly fascinating, as it can remotely assemble NPs into well-ordered superstructures. Moreover, external fields (e.g., electric, magnetic, and shear fields) can introduce a local and/or global field intensity gradient, resulting in an additional force on NPs to drive their rotation and/or translation. Therefore, the external field-directed assembly of NPs becomes a robust method to fabricate well-defined functional materials with the desired optical, electronic, and magnetic properties, which have various applications in catalysis, sensing, disease diagnosis, energy conversion/storage, photonics, nano-floating-gate memory, and others. In this review, the effects of an electric field, magnetic field, and shear field on the organization of inorganic NPs are highlighted. The methods for controlling the well-ordered organization of inorganic NPs at different scales and their advantages are reviewed. Finally, future challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Huayang Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Hao Li
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Pan Gu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Caili Huang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Chenglong Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430074, China
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
49
|
Liang J, Al Balushi ZY. Light-Induced Surface Tension Gradients for Hierarchical Assembly of Particles from Liquid Metals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10182-10192. [PMID: 36728152 PMCID: PMC9951180 DOI: 10.1021/acsami.2c20116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Achieving control over the motion of dissolved particles in liquid metals is of importance for the meticulous realization of hierarchical particle assemblies in a variety of nanofabrication processes. Brownian forces can impede the motion of such particles, impacting the degree of perfection that can be realized in assembled structures. Here, we show that light-induced Marangoni flow in liquid metals (i.e., liquid-gallium) with Laguerre-Gaussian (LGpl) lasers as heating sources is an effective approach to overcome Brownian forces on particles, giving rise to predictable assemblies with a high degree of order. We show that by carefully engineering surface tension gradients in liquid-gallium using non-Gaussian LGpl lasers, the Marangoni and convective flow that develops in the fluid drives the trajectory of randomly dispersed particles to assemble into 100 μm wide ring-shaped particle assemblies. Careful control over the parameters of the LGpl laser (i.e., laser mode, spot size, and intensity of the electric field) can tune the temperature and fluid dynamics of the liquid-gallium as well as the balance of forces on the particle. This in turn can tune the structure of the ring-shaped particle assembly with a high degree of fidelity. The use of light to control the motion of particles in liquid metals represents a tunable and rapidly reconfigurable approach to spatially design surface tension gradients in fluids for more complex assembly of particles and small-scale solutes. This work can be extended to a variety of liquid metals, complementary to what has been realized in particle assembly out of ferrofluids using magnetic fields.
Collapse
Affiliation(s)
- Jiayun Liang
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California94720, United States
| | - Zakaria Y. Al Balushi
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| |
Collapse
|
50
|
Hou M, Li N, Tian X, Yu Q, Hinestroza JP, Kong X. Preparation of SERS active filter paper for filtration and detection of pesticides residue from complex sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121860. [PMID: 36137503 DOI: 10.1016/j.saa.2022.121860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
The selectivity is needed mostly in SERS sensing because analytes of interest are commonly present in a complex mixture containing particles and impurities, which hinder the interactions between the laser and analyte being detected. In this manuscript, we describe our efforts developing a simple and instant. method to prepare a filter paper SERS sensor. Colloidal Ag nanoparticles were immobilized on one side of filter paper via an in-situ growth method. The fabrication process of the sensor could be finished in several minutes, and no special facility needed. The filter paper SERS sensor demonstrated a spectra uniformity with a 7.0 % point-by-point signal deviation. And the filter function of the sensor could effectively filter out interferences from samples in 1 min, that allowing the direct detection of thiram in ketchup by SERS with detection limit of 93 ppb. Furthermore, we used a Quick Easy Cheap Effective Rugged and Safe (QuEChERS) sample preparation method to detect malachite green (MG) in soil with a sensitivity as low as 0.01 ppm without any sample pre-treatment or purification. A SERS filter paper may open a new avenue for rapid testing of food quality during manufacturing as well as fast detection of potential contaminants in a myriad of substrates.
Collapse
Affiliation(s)
- Min Hou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Ning Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; Engineering Training Centre, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Xiaoran Tian
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Juan-P Hinestroza
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|