1
|
Kim J, Tian Y, Qiao G, Villarta JA, Zhao F, He A, Ho RJ, Liu H, Bhargava R, Zhang Y. Endoscopic Fourier-transform infrared spectroscopy through a fiber microprobe. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:033702. [PMID: 40029128 DOI: 10.1063/5.0233920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Fourier-transform infrared spectroscopy (FTIR) is a powerful analytical method not only for the chemical identification of solid, liquid, and gas species but also for the quantification of their concentration. However, the chemical quantification capability of FTIR is significantly hindered when the analyte is surrounded by a strong IR absorbing medium, such as liquid solutions. To overcome this limit, here we develop an IR fiber microprobe that can be inserted into a liquid medium and obtain full FTIR spectra at points of interest. To benchmark this endoscopic FTIR method, we insert the microprobe into bulk water covering a ZnSe substrate and measure the IR transmittance of water as a function of the probe-substrate distance. The obtained vibrational modes, overall transmittance vs z profiles, quantitative absorption coefficients, and micro z-section IR transmittance spectra are all consistent with the standard IR absorption properties of water. The results pave the way for endoscopic chemical profiling inside bulk liquid solutions, promising for applications in many biological, chemical, and electrochemical systems.
Collapse
Affiliation(s)
- Jaehyeon Kim
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Yue Tian
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Guanhua Qiao
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Julinna Abulencia Villarta
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Fujia Zhao
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Andrew He
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Ruo-Jing Ho
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA
| | - Haoran Liu
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Yingjie Zhang
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
2
|
Banik A, Maekawa H, Fajardo J, Zutter B, Alcorn FM, Kumar S, Watanabe K, Kudo A, Ge NH, Talin AA, Sambur JB. Unequal {110} Facets: The Potential Role of Intraparticle Heterogeneity and Facet Termination in Photoelectrochemical Activity of Single BiVO 4 Particles. ACS NANO 2025; 19:6250-6262. [PMID: 39899433 DOI: 10.1021/acsnano.4c15460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
BiVO4 photoanodes are promising for solar water splitting, with photogenerated electrons and holes preferentially reacting at top {010} and lateral {110} facets, respectively. However, the mechanisms driving this facet-dependent reactivity remain unclear. Here, we investigate facet-dependent photocurrent and material heterogeneity using correlative scanning photoelectrochemical microscopy (SPCM), electron beam induced current (EBIC) mapping, and mid-IR scattering scanning near-field optical microscopy (s-SNOM). SPCM measurements of 62 BiVO4 particles confirmed higher photocurrents at lateral {110} facets compared to top {010} facets, but unexpectedly revealed variations in photocurrent among lateral facets within the same particle. Variations in lateral facet surface termination could explain the intraparticle-level reactivity heterogeneity, consistent with theoretical predictions. Nano-FTIR spectroscopy and Raman microspectroscopy indicated significant materials chemistry heterogeneity within individual particles and facets that could be attributed to variations in lattice vibration distortions that enhance the overlap between Bi 6s and O 2p orbitals. The increased orbital overlap is significant as it potentially increases hole mobility in the valence band and potentially explains the lateral facet-dependent charge separation efficiency observed in photocurrent maps. Facet-dependent electrical and EBIC measurements showed no space charge regions at interfacet junctions or metal-BiVO4 contacts under vacuum, suggesting that photogenerated holes beneath top {010} facets are unlikely to transport to lateral {110} facets to drive water/sulfite oxidation. These findings indicate the potential influence of distinct bulk properties and surface termination chemistries across different particles and facets, highlighting the importance of carefully controlling defects and surface chemistry during sample growth to optimize photocatalytic performance.
Collapse
Affiliation(s)
- Avishek Banik
- Department of Chemistry, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523-1872, United States
| | - Hiroaki Maekawa
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Javier Fajardo
- Materials Physics Department, Sandia National Laboratories, Livermore, California 94550, United States
| | - Brian Zutter
- Materials Physics Department, Sandia National Laboratories, Livermore, California 94550, United States
| | - Francis M Alcorn
- Materials Physics Department, Sandia National Laboratories, Livermore, California 94550, United States
| | - Suhas Kumar
- Materials Physics Department, Sandia National Laboratories, Livermore, California 94550, United States
| | - Kenta Watanabe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Akihiko Kudo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Nien-Hui Ge
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - A Alec Talin
- Materials Physics Department, Sandia National Laboratories, Livermore, California 94550, United States
| | - Justin B Sambur
- Department of Chemistry, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
3
|
Yilmaz U, Sam S, Lendl B, Ramer G. Bottom-Illuminated Photothermal Nanoscale Chemical Imaging with a Flat Silicon ATR in Air and Liquid. Anal Chem 2024; 96:4410-4418. [PMID: 38445554 PMCID: PMC10955511 DOI: 10.1021/acs.analchem.3c04348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
We demonstrate a novel approach for bottom-illuminated atomic force microscopy and infrared spectroscopy (AFM-IR). Bottom-illuminated AFM-IR for measurements in liquids makes use of an attenuated total reflection setup where the developing evanescent wave is responsible for photothermal excitation of the sample of interest. Conventional bottom-illuminated measurements are conducted using high-refractive-index prisms. We showcase the advancement of instrumentation through the introduction of flat silicon substrates as replacements for prisms. We illustrate the feasibility of this technique for bottom-illuminated AFM-IR in both air and liquid. We also show how modern rapid prototyping technologies enable commercial AFM-IR instrumentation to accept these new substrates. This new approach paves the way for a wide range of experiments since virtually any established protocol for Si surface functionalization can be applied to this sample carrier. Furthermore, the low unit cost enables the rapid iteration of experiments.
Collapse
Affiliation(s)
- Ufuk Yilmaz
- Institute
of Chemical Technologies and Analytics, TU Wien, Vienna 1060, Austria
| | - Savda Sam
- Institute
of Chemical Technologies and Analytics, TU Wien, Vienna 1060, Austria
- Centre
for Advanced Photonics and Process Analysis, Munster Technological University, Cork T12P928, Ireland
| | - Bernhard Lendl
- Institute
of Chemical Technologies and Analytics, TU Wien, Vienna 1060, Austria
| | - Georg Ramer
- Institute
of Chemical Technologies and Analytics, TU Wien, Vienna 1060, Austria
| |
Collapse
|
4
|
Joseph J, Spantzel L, Ali M, Moonnukandathil Joseph D, Unger S, Reglinski K, Krafft C, Müller AD, Eggeling C, Heintzmann R, Börsch M, Press AT, Täuber D. Nanoscale chemical characterization of secondary protein structure of F-Actin using mid-infrared photoinduced force microscopy (PiF-IR). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123612. [PMID: 37931494 DOI: 10.1016/j.saa.2023.123612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/15/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The recently developed photoinduced force microscopy for mid-infrared (PiF-IR) offers high spectral resolution in combination with surface sensitivity and a spatial resolution in the range of a few nanometers. Although PiF-IR has primarily been applied to polymer materials, this technology presents significant potential for the chemical characterization of cellular structures approaching single-molecule sensitivity. We applied PiF-IR to differently polymerized F-Actin samples finding general agreement with FTIR spectra from the same samples. Single PiF-IR spectra of F-Actin show variations in the amide I band spectral region, which is related to secondary protein structure. Local variations are also seen in PiF-IR hyperspectra in this region. Such high sensitivity is a necessary requirement for discriminating Actin organization into bundles and other networks in cells and tissue. We applied PiF-IR to mouse liver tissue ex vivo. Single-frequency PiF-IR scans at three different IR frequencies show significant variations in local contrast. However, the presence of other proteins and the unique spatial resolution of PiF-IR pose a challenge to interpreting and validating such data. Careful design of model systems and further theoretical understanding of PiF-IR data far from bulk averages are needed to fully unfold the potential of PiF-IR for high-resolution chemical investigation in the Life Sciences.
Collapse
Affiliation(s)
- Jesvin Joseph
- Leibniz Institute of Photonic Technology, Department of Microscopy, Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany
| | - Lukas Spantzel
- Jena University Hospital, Single-Molecule Microscopy Group, Jena, Germany; Friedrich Schiller University Jena, Faculty of Medicine, Jena, Germany
| | - Maryam Ali
- Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany
| | - Dijo Moonnukandathil Joseph
- Leibniz Institute of Photonic Technology, Department of Microscopy, Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany
| | - Sebastian Unger
- Leibniz Institute of Photonic Technology, Department of Microscopy, Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany
| | - Katharina Reglinski
- Leibniz Institute of Photonic Technology, Biophysical Imaging, Jena, Germany; Friedrich Schiller University Jena, Institute for Applied Optics and Biophysics, Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Department of Spectroscopy & Imaging, Jena, Germany
| | | | - Christian Eggeling
- Leibniz Institute of Photonic Technology, Biophysical Imaging, Jena, Germany; Friedrich Schiller University Jena, Institute for Applied Optics and Biophysics, Jena, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Department of Microscopy, Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany
| | - Michael Börsch
- Jena University Hospital, Single-Molecule Microscopy Group, Jena, Germany; Friedrich Schiller University Jena, Faculty of Medicine, Jena, Germany
| | - Adrian T Press
- Friedrich Schiller University Jena, Faculty of Medicine, Jena, Germany; Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany
| | - Daniela Täuber
- Leibniz Institute of Photonic Technology, Department of Microscopy, Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry & Abbe Center of Photonics, Jena, Germany; Friedrich Schiller University Jena, Institute of Solid State Physics, Jena, Germany.
| |
Collapse
|
5
|
Li J, Liang J, Lan MH, Xia XH. Atomic force microscopy-based nanoscale infrared techniques for liquid environments. Sci Bull (Beijing) 2024; 69:151-153. [PMID: 37993337 DOI: 10.1016/j.scib.2023.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Affiliation(s)
- Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Liang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mu-Hao Lan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Nishida J, Otomo A, Koitaya T, Shiotari A, Minato T, Iino R, Kumagai T. Sub-Tip-Radius Near-Field Interactions in Nano-FTIR Vibrational Spectroscopy on Single Proteins. NANO LETTERS 2024; 24:836-843. [PMID: 38193723 DOI: 10.1021/acs.nanolett.3c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Tip-enhanced vibrational spectroscopy has advanced to routinely attain nanoscale spatial resolution, with tip-enhanced Raman spectroscopy even achieving atomic-scale and submolecular sensitivity. Tip-enhanced infrared spectroscopy techniques, such as nano-FTIR and AFM-IR spectroscopy, have also enabled the nanoscale chemical analysis of molecular monolayers, inorganic nanoparticles, and protein complexes. However, fundamental limits of infrared nanospectroscopy in terms of spatial resolution and sensitivity have remained elusive, calling for a quantitative understanding of the near-field interactions in infrared nanocavities. Here, we demonstrate the application of nano-FTIR spectroscopy to probe the amide-I vibration of a single protein consisting of ∼500 amino acid residues. Detection with higher tip tapping demodulation harmonics up to the seventh order leads to pronounced enhancement in the peak amplitude of the vibrational resonance, originating from sub-tip-radius geometrical effects beyond dipole approximations. This quantitative characterization of single-nanometer near-field interactions opens the path toward employing infrared vibrational spectroscopy at the subnanoscale and single-molecule levels.
Collapse
Affiliation(s)
- Jun Nishida
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Akihiro Otomo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Takanori Koitaya
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Akitoshi Shiotari
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Taketoshi Minato
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Takashi Kumagai
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
7
|
Schmid SY, Lachowski K, Chiang HT, Pozzo L, De Yoreo J, Zhang S. Mechanisms of Biomolecular Self-Assembly Investigated Through In Situ Observations of Structures and Dynamics. Angew Chem Int Ed Engl 2023; 62:e202309725. [PMID: 37702227 DOI: 10.1002/anie.202309725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 09/14/2023]
Abstract
Biomolecular self-assembly of hierarchical materials is a precise and adaptable bottom-up approach to synthesizing across scales with considerable energy, health, environment, sustainability, and information technology applications. To achieve desired functions in biomaterials, it is essential to directly observe assembly dynamics and structural evolutions that reflect the underlying energy landscape and the assembly mechanism. This review will summarize the current understanding of biomolecular assembly mechanisms based on in situ characterization and discuss the broader significance and achievements of newly gained insights. In addition, we will also introduce how emerging deep learning/machine learning-based approaches, multiparametric characterization, and high-throughput methods can boost the development of biomolecular self-assembly. The objective of this review is to accelerate the development of in situ characterization approaches for biomolecular self-assembly and to inspire the next generation of biomimetic materials.
Collapse
Affiliation(s)
- Sakshi Yadav Schmid
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kacper Lachowski
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
| | - Huat Thart Chiang
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Lilo Pozzo
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Jim De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
8
|
Temperini ME, Polito R, Intze A, Gillibert R, Berkmann F, Baldassarre L, Giliberti V, Ortolani M. A mid-infrared laser microscope for the time-resolved study of light-induced protein conformational changes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:064102. [PMID: 37862502 DOI: 10.1063/5.0136676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/26/2023] [Indexed: 10/22/2023]
Abstract
We have developed a confocal laser microscope operating in the mid-infrared range for the study of light-sensitive proteins, such as rhodopsins. The microscope features a co-aligned infrared and visible illumination path for the selective excitation and probing of proteins located in the IR focus only. An external-cavity tunable quantum cascade laser provides a wavelength tuning range (5.80-6.35 µm or 1570-1724 cm-1) suitable for studying protein conformational changes as a function of time delay after visible light excitation with a pulsed LED. Using cryogen-free detectors, the relative changes in the infrared absorption of rhodopsin thin films around 10-4 have been observed with a time resolution down to 30 ms. The measured full-width at half maximum of the Airy disk at λ = 6.08 µm in transmission mode with a confocal arrangement of apertures is 6.6 µm or 1.1λ. Dark-adapted sample replacement at the beginning of each photocycle is then enabled by exchanging the illuminated thin-film location with the microscope mapping stage synchronized to data acquisition and LED excitation and by averaging hundreds of time traces acquired in different nearby locations within a homogeneous film area. We demonstrate that this instrument provides crucial advantages for time-resolved IR studies of rhodopsin thin films with a slow photocycle. Time-resolved studies of inhomogeneous samples may also be possible with the presented instrument.
Collapse
Affiliation(s)
- Maria Eleonora Temperini
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
- Center for Life Nano & Neuro Science CL2NS, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Raffaella Polito
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
| | - Antonia Intze
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
- Center for Life Nano & Neuro Science CL2NS, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Raymond Gillibert
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
| | - Fritz Berkmann
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
| | - Leonetta Baldassarre
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
| | - Valeria Giliberti
- Center for Life Nano & Neuro Science CL2NS, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Michele Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
- Center for Life Nano & Neuro Science CL2NS, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| |
Collapse
|
9
|
Niehues I, Mester L, Vicentini E, Wigger D, Schnell M, Hillenbrand R. Identification of weak molecular absorption in single-wavelength s-SNOM images. OPTICS EXPRESS 2023; 31:7012-7022. [PMID: 36823946 DOI: 10.1364/oe.483804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Scattering-type scanning near-field optical microscopy (s-SNOM) allows for nanoscale optical mapping of manifold material properties. It is based on interferometric recording of the light scattered at a scanning probe tip. For dielectric samples such as biological materials or polymers, the near-field amplitude and phase signals of the scattered field reveal the local reflectivity and absorption, respectively. Importantly, absorption in s-SNOM imaging corresponds to a positive phase contrast relative to a non-absorbing reference sample. Here, we describe that in certain conditions (weakly or non- absorbing material placed on a highly reflective substrate), a slight negative phase contrast may be observed, which can hinder the recognition of materials exhibiting a weak infrared absorption. We first document this effect and explore its origin using representative test samples. We then demonstrate straightforward simple correction methods that remove the negative phase contrast and that allow for the identification of weak absorption contrasts.
Collapse
|
10
|
In vitro investigation of protein assembly by combined microscopy and infrared spectroscopy at the nanometer scale. Proc Natl Acad Sci U S A 2022; 119:e2200019119. [PMID: 35914130 PMCID: PMC9371722 DOI: 10.1073/pnas.2200019119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nanoscale structure and dynamics of proteins on surfaces has been extensively studied using various imaging techniques, such as transmission electron microscopy and atomic force microscopy (AFM) in liquid environments. These powerful imaging techniques, however, can potentially damage or perturb delicate biological material and do not provide chemical information, which prevents a fundamental understanding of the dynamic processes underlying their evolution under physiological conditions. Here, we use a platform developed in our laboratory that enables acquisition of infrared (IR) spectroscopy and AFM images of biological material in physiological liquids with nanometer resolution in a cell closed by atomically thin graphene membranes transparent to IR photons. In this work, we studied the self-assembly process of S-layer proteins at the graphene-aqueous solution interface. The graphene acts also as the membrane separating the solution containing the proteins and Ca2+ ions from the AFM tip, thus eliminating sample damage and contamination effects. The formation of S-layer protein lattices and their structural evolution was monitored by AFM and by recording the amide I and II IR absorption bands, which reveal the noncovalent interaction between proteins and their response to the environment, including ionic strength and solvation. Our measurement platform opens unique opportunities to study biological material and soft materials in general.
Collapse
|
11
|
Wang L, Wang H, Xu XG. Principle and applications of peak force infrared microscopy. Chem Soc Rev 2022; 51:5268-5286. [PMID: 35703031 DOI: 10.1039/d2cs00096b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Peak force infrared (PFIR) microscopy is an emerging atomic force microscopy (AFM)-based infrared microscopy that bypasses Abbe's diffraction limit on spatial resolution. The PFIR microscopy utilizes a nanoscopically sharp AFM tip to mechanically detect the tip-enhanced infrared photothermal response of the sample in the time domain. The time-gated mechanical signals of cantilever deflections transduce the infrared absorption of the sample, delivering infrared imaging and spectroscopy capability at sub 10 nm spatial resolution. Both the infrared absorption response and mechanical properties of the sample are obtained in parallel while preserving the surface integrity of the sample. This review describes the constructions of the PFIR microscope and several variations, including multiple-pulse excitation, total internal reflection geometry, dual-color configuration, liquid-phase operations, and integrations with simultaneous surface potential measurement. Representative applications of PFIR microscopy are also included in this review. In the outlook section, we lay out several future directions of innovations in PFIR microscopy and applications in chemical and material research.
Collapse
Affiliation(s)
- Le Wang
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA.
| |
Collapse
|
12
|
Review on the applications of atomic force microscopy imaging in proteins. Micron 2022; 159:103293. [DOI: 10.1016/j.micron.2022.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
|
13
|
Choi B, Jeong G, Shin HH, Kim ZH. Molecular vibrational imaging at nanoscale. J Chem Phys 2022; 156:160902. [PMID: 35490022 DOI: 10.1063/5.0082747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The demand to visualize the spatial distribution of chemical species based on vibrational spectra is rapidly increasing. Driven by such a need, various Raman and infrared spectro-microscopies with a nanometric spatial resolution have been developed over the last two decades. Despite rapid progress, a large gap still exists between the general needs and what these techniques can achieve. This Perspective highlights the key challenges and recent breakthroughs of the two vibrational nano-imaging techniques, scattering-type scanning near-field optical microscopy and tip-enhanced Raman scattering.
Collapse
Affiliation(s)
- Boogeon Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Gyouil Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Hyun-Hang Shin
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
14
|
Wang H, Xie Q, Xu XG. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope. Adv Drug Deliv Rev 2022; 180:114080. [PMID: 34906646 DOI: 10.1016/j.addr.2021.114080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Small biomolecules at the subcellular level are building blocks for the manifestation of complex biological activities. However, non-intrusive in situ investigation of biological systems has been long daunted by the low spatial resolution and poor sensitivity of conventional light microscopies. Traditional infrared (IR) spectro-microscopy can enable label-free visualization of chemical bonds without extrinsic labeling but is still bound by Abbe's diffraction limit. This review article introduces a way to bypass the optical diffraction limit and improve the sensitivity for mid-IR methods - using tip-enhanced light nearfield in atomic force microscopy (AFM) operated in tapping and peak force tapping modes. Working principles of well-established scattering-type scanning near-field optical microscopy (s-SNOM) and two relatively new techniques, namely, photo-induced force microscopy (PiFM) and peak force infrared (PFIR) microscopy, will be briefly presented. With ∼ 10-20 nm spatial resolution and monolayer sensitivity, their recent applications in revealing nanoscale chemical heterogeneities in a wide range of biological systems, including biomolecules, cells, tissues, and biomaterials, will be reviewed and discussed. We also envision several future improvements of AFM-based tapping and peak force tapping mode nano-IR methods that permit them to better serve as a versatile platform for uncovering biological mechanisms at the fundamental level.
Collapse
Affiliation(s)
- Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qing Xie
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
15
|
Abstract
Although techniques such as fluorescence-based super-resolution imaging or confocal microscopy simultaneously gather both morphological and chemical data, these techniques often rely on the use of localized and chemically specific markers. To eliminate this flaw, we have developed a method of examining cellular cross sections using the imaging power of scattering-type scanning near-field optical microscopy and Fourier-transform infrared spectroscopy at a spatial resolution far beyond the diffraction limit. Herewith, nanoscale surface and volumetric chemical imaging is performed using the intrinsic contrast generated by the characteristic absorption of mid-infrared radiation by the covalent bonds. We employ infrared nanoscopy to study the subcellular structures of eukaryotic (Chlamydomonas reinhardtii) and prokaryotic (Escherichia coli) species, revealing chemically distinct regions within each cell such as the microtubular structure of the flagellum. Serial 100 nm-thick cellular cross-sections were compiled into a tomogram yielding a three-dimensional infrared image of subcellular structure distribution at 20 nm resolution. The presented methodology is able to image biological samples complementing current fluorescence nanoscopy but at less interference due to the low energy of infrared radiation and the absence of labeling.
Collapse
|
16
|
Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in water. Sci Rep 2021; 11:21860. [PMID: 34750511 PMCID: PMC8576021 DOI: 10.1038/s41598-021-01425-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infrared fingerprint spectra can reveal the chemical nature of materials down to 20-nm detail, far below the diffraction limit, when probed by scattering-type scanning near-field optical microscopy (s-SNOM). But this was impossible with living cells or aqueous processes as in corrosion, due to water-related absorption and tip contamination. Here, we demonstrate infrared s-SNOM of water-suspended objects by probing them through a 10-nm thick SiN membrane. This separator stretches freely over up to 250 µm, providing an upper, stable surface to the scanning tip, while its lower surface is in contact with the liquid and localises adhering objects. We present its proof-of-principle applicability in biology by observing simply drop-casted, living E. coli in nutrient medium, as well as living A549 cancer cells, as they divide, move and develop rich sub-cellular morphology and adhesion patterns, at 150 nm resolution. Their infrared spectra reveal the local abundances of water, proteins, and lipids within a depth of ca. 100 nm below the SiN membrane, as we verify by analysing well-defined, suspended polymer spheres and through model calculations. SiN-membrane based s-SNOM thus establishes a novel tool of live cell nano-imaging that returns structure, dynamics and chemical composition. This method should benefit the nanoscale analysis of any aqueous system, from physics to medicine.
Collapse
|
17
|
Wang H, González-Fialkowski JM, Li W, Xie Q, Yu Y, Xu XG. Liquid-Phase Peak Force Infrared Microscopy for Chemical Nanoimaging and Spectroscopy. Anal Chem 2021; 93:3567-3575. [PMID: 33573375 PMCID: PMC7988711 DOI: 10.1021/acs.analchem.0c05075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peak force infrared (PFIR) microscopy is an emerging atomic force microscopy that bypasses Abbe's diffraction limit in achieving chemical nanoimaging and spectroscopy. The PFIR microscopy mechanically detects the infrared photothermal responses in the dynamic tip-sample contact of peak force tapping mode and has been applied for a variety of samples, ranging from soft matters, photovoltaic heterojunctions, to polaritonic materials under the air conditions. In this article, we develop and demonstrate the PFIR microscopy in the liquid phase for soft matters and biological samples. With the capability of controlling fluid compositions on demand, the liquid-phase peak force infrared (LiPFIR) microscopy enables in situ tracking of the polymer surface reorganization in fluids and detecting the product of click chemical reaction in the aqueous phase. Both broadband spectroscopy and infrared imaging with ∼10 nm spatial resolution are benchmarked in the fluid phase, together with complementary mechanical information. We also demonstrate the LiPFIR microscopy on revealing the chemical composition of a budding site of yeast cell wall particles in water as an application on biological structures. The label-free, nondestructive chemical nanoimaging and spectroscopic capabilities of the LiPFIR microscopy will facilitate the investigations of soft matters and their transformations at the solid/liquid interface.
Collapse
Affiliation(s)
- Haomin Wang
- Department of Chemistry, Lehigh University, 6 E Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | | | - Wenqian Li
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Qing Xie
- Department of Chemistry, Lehigh University, 6 E Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, 6 E Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
18
|
Virmani D, Bylinkin A, Dolado I, Janzen E, Edgar JH, Hillenbrand R. Amplitude- and Phase-Resolved Infrared Nanoimaging and Nanospectroscopy of Polaritons in a Liquid Environment. NANO LETTERS 2021; 21:1360-1367. [PMID: 33511844 DOI: 10.1021/acs.nanolett.0c04108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polaritons allow for strong light-matter coupling and for highly sensitive analysis of (bio)chemical substances and processes. Nanoimaging of the polaritons' evanescent fields is critically important for experimental mode identification and field confinement studies. Here we describe two setups for polariton nanoimaging and spectroscopy in liquid. We first demonstrate the mapping of localized plasmon polaritons in metal antennas with a transflection infrared scattering-type scanning near-field optical microscope (s-SNOM), where the tip acts as a near-field scattering probe. We then demonstrate a total internal reflection (TIR)-based setup, where the tip is both launching and probing ultraconfined polaritons in van der Waals materials (here phonon polaritons in hexagonal boron nitride flakes), laying the foundation for s-SNOM-based polariton interferometry in liquid. Our results promise manifold applications, for example, in situ studies of strong coupling between polaritons and molecular vibrations or chemical reactions at the bare or functionalized surfaces of polaritonic materials.
Collapse
Affiliation(s)
- Divya Virmani
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Andrei Bylinkin
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Irene Dolado
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Eli Janzen
- Kansas State University, Tim Taylor Department of Chemical Engineering, Durland Hall, Manhattan, Kansas 66506, United States
| | - James H Edgar
- Kansas State University, Tim Taylor Department of Chemical Engineering, Durland Hall, Manhattan, Kansas 66506, United States
| | - Rainer Hillenbrand
- CIC nanoGUNE BRTA and Department of Electricity and Electronics, UPV/EHU, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
19
|
Wang H, Wang L, Janzen E, Edgar JH, Xu XG. Total Internal Reflection Peak Force Infrared Microscopy. Anal Chem 2020; 93:731-736. [DOI: 10.1021/acs.analchem.0c01176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Le Wang
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, Kansas 66506, United States
| | - James H. Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, Kansas 66506, United States
| | - Xiaoji G. Xu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
20
|
Lucidi M, Tranca DE, Nichele L, Ünay D, Stanciu GA, Visca P, Holban AM, Hristu R, Cincotti G, Stanciu SG. SSNOMBACTER: A collection of scattering-type scanning near-field optical microscopy and atomic force microscopy images of bacterial cells. Gigascience 2020; 9:giaa129. [PMID: 33231675 PMCID: PMC7684706 DOI: 10.1093/gigascience/giaa129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In recent years, a variety of imaging techniques operating at nanoscale resolution have been reported. These techniques have the potential to enrich our understanding of bacterial species relevant to human health, such as antibiotic-resistant pathogens. However, owing to the novelty of these techniques, their use is still confined to addressing very particular applications, and their availability is limited owing to associated costs and required expertise. Among these, scattering-type scanning near field optical microscopy (s-SNOM) has been demonstrated as a powerful tool for exploring important optical properties at nanoscale resolution, depending only on the size of a sharp tip. Despite its huge potential to resolve aspects that cannot be tackled otherwise, the penetration of s-SNOM into the life sciences is still proceeding at a slow pace for the aforementioned reasons. RESULTS In this work we introduce SSNOMBACTER, a set of s-SNOM images collected on 15 bacterial species. These come accompanied by registered Atomic Force Microscopy images, which are useful for placing nanoscale optical information in a relevant topographic context. CONCLUSIONS The proposed dataset aims to augment the popularity of s-SNOM and for accelerating its penetration in life sciences. Furthermore, we consider this dataset to be useful for the development and benchmarking of image analysis tools dedicated to s-SNOM imaging, which are scarce, despite the high need. In this latter context we discuss a series of image processing and analysis applications where SSNOMBACTER could be of help.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- University Roma Tre, Department of Engineering, via Vito Volterra 62, Rome, 00146, Italy
| | - Denis E Tranca
- University Politehnica of Bucharest, Center for Microscopy-Microanalysis and Information Processing, 313 Splaiul Independentei, Bucharest,060042, Romania
| | - Lorenzo Nichele
- University Roma Tre, Department of Engineering, via Vito Volterra 62, Rome, 00146, Italy
| | - Devrim Ünay
- İzmir Democracy University, Faculty of Engineering, Electrical and Electronics Engineering, 14 Gürsel Aksel Bulvarı, İzmir, 35140, Turkey
| | - George A Stanciu
- University Politehnica of Bucharest, Center for Microscopy-Microanalysis and Information Processing, 313 Splaiul Independentei, Bucharest,060042, Romania
| | - Paolo Visca
- University Roma Tre, Department of Science, via Vito Volterra 62, Rome, 00146, Italy
| | - Alina Maria Holban
- University of Bucharest, Faculty of Biology, Department of Microbiology and Immunology, 1-3 Aleea Portocalelor, Bucharest, 060101, Romania
| | - Radu Hristu
- University Politehnica of Bucharest, Center for Microscopy-Microanalysis and Information Processing, 313 Splaiul Independentei, Bucharest,060042, Romania
| | - Gabriella Cincotti
- University Roma Tre, Department of Engineering, via Vito Volterra 62, Rome, 00146, Italy
| | - Stefan G Stanciu
- University Politehnica of Bucharest, Center for Microscopy-Microanalysis and Information Processing, 313 Splaiul Independentei, Bucharest,060042, Romania
| |
Collapse
|