1
|
Song Y, Lin X, Yu S, Bu Y, Song X. Hydrogen-migration governed dynamic magnetic coupling characteristics in nitrogen-vacancy-hydrogen nanodiamonds. Phys Chem Chem Phys 2023; 25:25818-25827. [PMID: 37724461 DOI: 10.1039/d3cp02875e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The nitrogen-vacancy center doped with hydrogen (NVH) is one of the most common defects in diamonds, and the doping of hydrogen is known to enable mobility among three equivalent C-radicals in the defect, which noticeably affects the spin coupling among the radicals. Here, we for the first time uncover the dynamic nature of magnetic coupling induced by H-migration in the NVH center of nanodiamonds, using spin-polarized density functional theory calculations and enhanced sampling metadynamics simulations. The mobility of doping H enables the interior NVH region to become a variable magnetic space (antiferromagnetic/AFM versus ferromagnetic/FM). That is, the dynamic H has three frequently reachable binding C sites where H enables the center to exhibit variable AFM coupling (high up to J = -1282 cm-1) and that in other H-reachable regions including N sites, it enables the center to exhibit FM coupling (high up to J = 598 cm-1). The magnetic switching (AFM ↔ FM) and strength fluctuation strongly depend on the H-position which can adjust the ratio of the C radical orbitals in their mixing orbitals for a special three-electron three-center covalent C⋯H⋯C H-bonding and radical orbital distributions. Clearly, this work provides insights into the dynamic switching of magnetic coupling in such multi-radical centers of defect nanodiamonds.
Collapse
Affiliation(s)
- Yamin Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Xuexing Lin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Shaofen Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Xinyu Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
2
|
Tepliakov NV, Lischner J, Kaxiras E, Mostofi AA, Pizzochero M. Unveiling and Manipulating Hidden Symmetries in Graphene Nanoribbons. PHYSICAL REVIEW LETTERS 2023; 130:026401. [PMID: 36706398 DOI: 10.1103/physrevlett.130.026401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Armchair graphene nanoribbons are a highly promising class of semiconductors for all-carbon nanocircuitry. Here, we present a new perspective on their electronic structure from simple model Hamiltonians and ab initio calculations. We focus on a specific set of nanoribbons of width n=3p+2, where n is the number of carbon atoms across the nanoribbon axis and p is a positive integer. We demonstrate that the energy-gap opening in these nanoribbons originates from the breaking of a previously unidentified hidden symmetry by long-ranged hopping of π electrons and structural distortions occurring at the edges. This hidden symmetry can be restored or manipulated through the application of in-plane lattice strain, which enables continuous energy-gap tuning, the emergence of Dirac points at the Fermi level, and topological quantum phase transitions. Our work establishes an original interpretation of the semiconducting character of armchair graphene nanoribbons and offers guidelines for rationally designing their electronic structure.
Collapse
Affiliation(s)
- Nikita V Tepliakov
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Johannes Lischner
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Efthimios Kaxiras
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Arash A Mostofi
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michele Pizzochero
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
3
|
de Oteyza DG, Frederiksen T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:443001. [PMID: 35977474 DOI: 10.1088/1361-648x/ac8a7f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Emergence ofπ-magnetism in open-shell nanographenes has been theoretically predicted decades ago but their experimental characterization was elusive due to the strong chemical reactivity that makes their synthesis and stabilization difficult. In recent years, on-surface synthesis under vacuum conditions has provided unprecedented opportunities for atomically precise engineering of nanographenes, which in combination with scanning probe techniques have led to a substantial progress in our capabilities to realize localized electron spin states and to control electron spin interactions at the atomic scale. Here we review the essential concepts and the remarkable advances in the last few years, and outline the versatility of carbon-basedπ-magnetic materials as an interesting platform for applications in spintronics and quantum technologies.
Collapse
Affiliation(s)
- Dimas G de Oteyza
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, E-33940 El Entrego, Spain
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
| |
Collapse
|
4
|
Pizzochero M, Kaxiras E. Hydrogen Atoms on Zigzag Graphene Nanoribbons: Chemistry and Magnetism Meet at the Edge. NANO LETTERS 2022; 22:1922-1928. [PMID: 35167308 DOI: 10.1021/acs.nanolett.1c04362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although the unconventional π-magnetism at the zigzag edges of graphene holds promise for a wide array of applications, whether and to what degree it plays a role in their chemistry remains poorly understood. Here, we investigate the addition of a hydrogen atom─the simplest yet the most experimentally relevant adsorbate─to zigzag graphene nanoribbons (ZGNRs). We show that the π-magnetism governs the chemistry of ZGNRs, giving rise to a site-dependent reactivity of the carbon atoms and driving the hydrogenation process to the nanoribbon edges. Conversely, the chemisorbed hydrogen atom governs the π-magnetism of ZGNRs, acting as a spin-1/2 paramagnetic center in the otherwise antiferromagnetic ground state and spin-polarizing the charge carriers at the band extrema. Our findings establish a comprehensive picture of the peculiar interplay between chemistry and magnetism that emerges at the zigzag edges of graphene.
Collapse
Affiliation(s)
- Michele Pizzochero
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Efthimios Kaxiras
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
5
|
Mazhari Mousavi F, Farghadan R. Electrical control of the spin-Seebeck coefficient in graphene nanoribbons with asymmetric zigzag edge extensions. Phys Chem Chem Phys 2022; 24:27195-27203. [DOI: 10.1039/d2cp03734c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We investigate the effect of the electric field on the spin-dependent thermoelectric properties of graphene nanoribbons with asymmetric zigzag edge extensions.
Collapse
|
6
|
Pizzochero M, Tepliakov NV, Mostofi AA, Kaxiras E. Electrically Induced Dirac Fermions in Graphene Nanoribbons. NANO LETTERS 2021; 21:9332-9338. [PMID: 34714095 DOI: 10.1021/acs.nanolett.1c03596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene nanoribbons are widely regarded as promising building blocks for next-generation carbon-based devices. A critical issue to their prospective applications is whether their electronic structure can be externally controlled. Here, we combine simple model Hamiltonians with extensive first-principles calculations to investigate the response of armchair graphene nanoribbons to transverse electric fields. Such fields can be achieved either upon laterally gating the nanoribbon or incorporating ambipolar chemical codopants along the edges. We reveal that the field induces a semiconductor-to-semimetal transition with the semimetallic phase featuring zero-energy Dirac fermions that propagate along the armchair edges. The transition occurs at critical fields that scale inversely with the width of the nanoribbons. These findings are universal to group-IV honeycomb lattices, including silicene and germanene nanoribbons, irrespective of the type of edge termination. Overall, our results create new opportunities to electrically engineer Dirac semimetallic phases in otherwise semiconducting graphene-like nanoribbons.
Collapse
Affiliation(s)
- Michele Pizzochero
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nikita V Tepliakov
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Center for Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
| | - Arash A Mostofi
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Efthimios Kaxiras
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
7
|
Pizzochero M, Barin GB, Čerņevičs KN, Wang S, Ruffieux P, Fasel R, Yazyev OV. Edge Disorder in Bottom-Up Zigzag Graphene Nanoribbons: Implications for Magnetism and Quantum Electronic Transport. J Phys Chem Lett 2021; 12:4692-4696. [PMID: 33979153 DOI: 10.1021/acs.jpclett.1c00921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We unveil the nature of the structural disorder in bottom-up zigzag graphene nanoribbons along with its effect on the magnetism and electronic transport on the basis of scanning probe microscopies and first-principles calculations. We find that edge-missing m-xylene units emerging during the cyclodehydrogenation step of the on-surface synthesis are the most common point defects. These "bite" defects act as spin-1 paramagnetic centers, severely disrupt the conductance spectrum around the band extrema, and give rise to spin-polarized charge transport. We further show that the electronic conductance across graphene nanoribbons is more sensitive to "bite" defects forming at the zigzag edges than at the armchair ones. Our work establishes a comprehensive understanding of the low-energy electronic properties of disordered bottom-up graphene nanoribbons.
Collapse
Affiliation(s)
- Michele Pizzochero
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriela Borin Barin
- Nanotech@Surfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology (EMPA), CH-8600 Dübendorf, Switzerland
| | - Kristia Ns Čerņevičs
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Shiyong Wang
- Nanotech@Surfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology (EMPA), CH-8600 Dübendorf, Switzerland
| | - Pascal Ruffieux
- Nanotech@Surfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology (EMPA), CH-8600 Dübendorf, Switzerland
| | - Roman Fasel
- Nanotech@Surfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology (EMPA), CH-8600 Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Oleg V Yazyev
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|