1
|
Hanczyc P. Role of Alkali Cations in DNA-Thioflavin T Interaction. J Phys Chem B 2024; 128:7520-7529. [PMID: 38833533 PMCID: PMC11317975 DOI: 10.1021/acs.jpcb.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
This study investigates the role of alkali cations in modulating the interaction between deoxyribonucleic acid (DNA) and Thioflavin T (ThT) in dilute and condensed phases. The emission characteristics of ThT were analyzed in the presence of double-stranded DNA and G-quadruplex structures with a focus on the effects of four cations: sodium, potassium, calcium, and magnesium. The ThT emission in double-stranded DNA was influenced by direct DNA binding and steric hindrance within the hydration shell of DNA, which was modulated by the presence of alkali cations. Lasing spectroscopy experiments further highlighted ThT sensitivity to the spatial arrangement of water molecules in the DNA hydration shell. Lasing was exclusively observed in the presence of Mg2+ in the G-quadruplex structure, suggesting that the parallel propeller configuration of G4 provides an optimal environment for ThT light amplification. This study highlights the critical role of cations in DNA-dye interactions and reaffirms the significance of ThT in biophysical studies.
Collapse
Affiliation(s)
- P. Hanczyc
- Institute of Experimental
Physics, Faculty of Physics, University
of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| |
Collapse
|
2
|
Chakraborty S, Pramanik S, Shekhar S, Mukherjee S. Plasmon-emitter coupling in cytosine-rich hairpin DNA-templated silver nanoclusters: Thermal reversibility, white light emission, and dynamics inside live cells. J Chem Phys 2024; 160:154303. [PMID: 38624117 DOI: 10.1063/5.0200544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
Bio-templated luminescent noble metal nanoclusters (NCs) have attracted great attention for their intriguing physicochemical properties. Continuous efforts are being made to prepare NCs with high fluorescence quantum yield (QY), good biocompatibility, and tunable emission properties for their widespread practical applications as new-generation environment-friendly photoluminescent materials in materials chemistry and biological systems. Herein, we explored the unique photophysical properties of silver nanoclusters (AgNCs) templated by cytosine-rich customized hairpin DNA. Our results indicate that a 36-nucleotide containing hairpin DNA with 20 cytosine (C20) in the loop can encapsulate photostable red-emitting AgNCs with an absolute QY of ∼24%. The luminescent properties in these DNA-templated AgNCs were found to be linked to the coupling between the surface plasmon and the emitter. These AgNCs exhibited excellent thermal sensitivity and were employed to produce high-quality white light emission with an impressive color rendering index of 90 in the presence of dansyl chloride. In addition, the as-prepared luminescent AgNCs possessing excellent biocompatibility can effectively mark the nuclear region of HeLa cells and can be employed as a luminescent probe to monitor the cellular dynamics at a single molecular resolution.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Shashi Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
3
|
Rai S, Pramanik S, Mukherjee S. Deciphering the liquid-liquid phase separation induced modulation in the structure, dynamics, and enzymatic activity of an ordered protein β-lactoglobulin. Chem Sci 2024; 15:3936-3948. [PMID: 38487243 PMCID: PMC10935713 DOI: 10.1039/d3sc06802a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 03/17/2024] Open
Abstract
Owing to the significant role in the subcellular organization of biomolecules, physiology, and the realm of biomimetic materials, studies related to biomolecular condensates formed through liquid-liquid phase separation (LLPS) have emerged as a growing area of research. Despite valuable contributions of prior research, there is untapped potential in exploring the influence of phase separation on the conformational dynamics and enzymatic activities of native proteins. Herein, we investigate the LLPS of β-lactoglobulin (β-LG), a non-intrinsically disordered protein, under crowded conditions. In-depth characterization through spectroscopic and microscopic techniques revealed the formation of dynamic liquid-like droplets, distinct from protein aggregates, driven by hydrophobic interactions. Our analyses revealed that phase separation can alter structural flexibility and photophysical properties. Importantly, the phase-separated β-LG exhibited efficient enzymatic activity as an esterase; a characteristic seemingly exclusive to β-LG droplets. The droplets acted as robust catalytic crucibles, providing an ideal environment for efficient ester hydrolysis. Further investigation into the catalytic mechanism suggested the involvement of specific amino acid residues, rather than general acid or base catalysis. Also, the alteration in conformational distribution caused by phase separation unveils the latent functionality. Our study delineates the understanding of protein phase separation and insights into the diverse catalytic strategies employed by proteins. It opens exciting possibilities for designing functional artificial compartments based on phase-separated biomolecules.
Collapse
Affiliation(s)
- Saurabh Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066 Madhya Pradesh India
| | - Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066 Madhya Pradesh India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
4
|
Khamari L, Mukherjee S. Deciphering the Nanoconfinement Effect on the Folding Pathway of c-MYC Promoter-Based Intercalated-Motif DNA by Single-Molecule Förster Resonance Energy Transfer. J Phys Chem Lett 2022; 13:8169-8176. [PMID: 36005552 DOI: 10.1021/acs.jpclett.2c01893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intercalated-motif (i-motif) DNA formed by cytosine (C)-rich sequences has been considered a novel target in anticancer research. Interestingly, this type of noncanonical DNA structure is highly dynamic and can display several conformational polymorphisms based on the immediate surrounding environment. However, studies regarding the folding pathway of i-motifs having disease-specific sequences under a confined environment at physiological pH are relatively scarce. This thereby warrants more explorations that will decipher their structural and functional properties inside constrained media. Herein, using the single-molecule Förster Resonance Energy Transfer (smFRET) studies, for the first time, we have illustrated the conformational dynamics of c-MYC promoter-based i-motif structures at physiological pH inside microemulsions of different dimensions. We concluded that the folding of such motifs under confined space is not a direct transition between the random coil and i-motif conformations; rather it occurs through a partially folded intermediate, depending on the confined dimension.
Collapse
Affiliation(s)
- Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
5
|
Chen W, Zhang Y, Di K, Liu C, Xia Y, Ding S, Shen H, Li Z. A Washing-Free and Easy-to-Operate Fluorescent Biosensor for Highly Efficient Detection of Breast Cancer-Derived Exosomes. Front Bioeng Biotechnol 2022; 10:945858. [PMID: 35837545 PMCID: PMC9273779 DOI: 10.3389/fbioe.2022.945858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Traditional detection methods for protein tumor markers in the early screening of breast cancer are restricted by complicated operation procedures and unstable reproducibility. As one of alternative emerging tumor markers, exosomes play an important role in diagnosing and treating cancers at the early stage due to traceability of their origins and great involvement in occurrence and development of cancers. Herein, a washing-free and efficient fluorescent biosensor has been proposed to realize simple and straightforward analysis of breast cancer cell-derived exosomes based on high affinity aptamers and G quadruplex-hemin (G4-hemin). The whole reaction process can be completed by several simple steps, which realizes washing-free and labor-saving. With simplified operation procedures and high repeatability, the linear detection range for this developed fluorescent biosensing strategy to breast cancer cell-derived exosomes is from 2.5 × 105 to 1.00 × 107 particles/ml, and the limit of detection is down to 0.54 × 105 particles/ml.
Collapse
Affiliation(s)
- Wenqin Chen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Kaili Di
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chang Liu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanyan Xia
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Shijia Ding, ; Han Shen, ; Zhiyang Li,
| | - Han Shen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Shijia Ding, ; Han Shen, ; Zhiyang Li,
| | - Zhiyang Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Shijia Ding, ; Han Shen, ; Zhiyang Li,
| |
Collapse
|
6
|
Pramanik U, Khamari L, Rai S, Mahato P, Nandy A, Yadav R, Agrawal S, Mukherjee S. Macrocyclic Cavitand β-Cyclodextrin Inhibits the Alcohol-induced Trypsin Aggregation. Chemphyschem 2022; 23:e202200155. [PMID: 35608331 DOI: 10.1002/cphc.202200155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Trypsin, the most abundant pancreatic protein, aids in protein digestion by hydrolysis and exhibits aggregation propensity in presence of alcohol which can further lead to pancreatitis and eventually pancreatic cancer. Herein, by several experimental and theoretical approaches, we unearth the inhibition of alcohol-induced aggregation of Trypsin by macrocyclic cavitand, β-cyclodextrin (β-CD). β-CD interacts with the native protein and shows inhibitory effect in a dose dependent manner. Moreover, the secondary structures and morphologies of Trypsin in presence of β-CD also clearly emphasize the inhibition of fibril formation. From Fluorescence Correlation Spectroscopy, we observed an enhancement in diffusion time of Nile Red with ~ 2.5 times increase in hydrodynamic radius, substantiating the presence of fibrillar structure. Trypsin also shows reduction in its functional activity due to alcohol-induced aggregation. Our simulation data reports the probable residues responsible for fibril formation which was validated by molecular docking studies.
Collapse
Affiliation(s)
- Ushasi Pramanik
- IISER Bopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Laxmikanta Khamari
- IISER Bhopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Saurabh Rai
- IISER Bhopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Paritosh Mahato
- IISER Bopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Atanu Nandy
- IISER Bhopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Rahul Yadav
- IISER Bhopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Sameeksha Agrawal
- IISER Bopal: Indian Institute of Science Education and Research Bhopal, Chemistry, INDIA
| | - Saptarshi Mukherjee
- Indian Institute of Science Education and Research Bhopal, Chemistry, Indore By-Pass Road, Bhauri, 462066, Bhopal, INDIA
| |
Collapse
|
7
|
Pramanik S, Mahato P, Pramanik U, Nandy A, Khamari L, Shrivastava S, Rai S, Mukherjee S. DNA-Templated Modulation in the Photophysical Properties of a Fluorescent Molecular Rotor Auramine O by Varying the DNA Composition. J Phys Chem B 2022; 126:2658-2668. [PMID: 35357836 DOI: 10.1021/acs.jpcb.2c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This work delineates an integrative approach combining spectroscopic and computational studies to decipher the association-induced fluorescence properties of a fluorescent molecular rotor, viz., auramine O (AuO), after interacting with 20-mer duplex DNA having diverse well-matched base pairs. While exploring the scarcely explored sequence-dependent interaction mechanism of AuO and DNA, we observed that DNA could act as a conducive scaffold to the formation of AuO dimer through noncovalent interactions at lower molecular density. The photophysical properties of AuO depend on the nucleotide compositions as described from sequence-dependent shifting in the emission and absorption maxima. Furthermore, we explored such DNA base pair-dependent fluorescence spectral characteristics of AuO toward discriminating the thermodynamically most stable single nucleotide mismatch in a 20-mer sequence. Our results are interesting and could be useful in developing analogues with further enhanced emission properties toward mismatched DNA sequences.
Collapse
Affiliation(s)
- Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Paritosh Mahato
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Ushasi Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Shivam Shrivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Saurabh Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
8
|
Khamari L, Pramanik S, Shekhar S, Mahato P, Mukherjee S. Preferential Binding of Epirubicin Hydrochloride with Single Nucleotide Mismatched DNA and Subsequent Sequestration by a Mixed Micelle. J Phys Chem B 2021; 125:11660-11672. [PMID: 34652157 DOI: 10.1021/acs.jpcb.1c06944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Targeting mismatched base pairs containing DNA using small molecules and exploring the underlying mechanism involved during the binding interactions is one of the fundamental aspects of drug design. These molecules in turn are used in nucleic acid targeted therapeutics and cancer diagnosis. In this work, we systematically delineate the binding of the anticancer drug, epirubicin hydrochloride (EPR) with 20-mer duplex DNA, having both natural nucleobase pairing and thermodynamically least stable non-Watson-Crick base pairing. From the thermal denaturation studies, we observed that EPR can remarkably enhance the thermal stability of cytosine-cytosine (CC) and cytosine-thymine (CT) mismatched (MM) DNA over other 20-mer duplex DNA. From steady-state fluorescence spectroscopy and isothermal titration calorimetry studies, we concluded that EPR binds strongly with the mismatched duplex DNA through the intercalation binding mode. The interaction of EPR and duplex DNA has also been monitored at a single molecular resolution using fluorescence correlation spectroscopy (FCS). Dynamic quantitates such as diffusion coefficients and hydrodynamic radii obtained from an FCS study along with association and dissociation rate constants estimated from intensity time trace analyses further substantiate the stronger binding affinity of EPR to the thermally less stable mismatched DNA, formed by the most discriminating nucleobase (viz. cytosine). Additionally, we have shown that EPR can be sequestered from nucleic acids using a mixed micellar system of an anionic surfactant and a triblock copolymer. From thermal denaturation studies and circular dichroism spectroscopy, we found that the extent of drug sequestration depends on the binding affinity of EPR to the duplex DNA, and this mixed micellar system can be employed for the removal of excess drug in the case of a drug overdose.
Collapse
Affiliation(s)
- Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Shashi Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Paritosh Mahato
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|