1
|
Cohen G, Haber JB, Neaton JB, Qiu DY, Refaely-Abramson S. Phonon-Driven Femtosecond Dynamics of Excitons in Crystalline Pentacene from First Principles. PHYSICAL REVIEW LETTERS 2024; 132:126902. [PMID: 38579218 DOI: 10.1103/physrevlett.132.126902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/24/2023] [Accepted: 02/11/2024] [Indexed: 04/07/2024]
Abstract
Nonradiative exciton relaxation processes are critical for energy transduction and transport in optoelectronic materials, but how these processes are connected to the underlying crystal structure and the associated electron, exciton, and phonon band structures, as well as the interactions of all these particles, is challenging to understand. Here, we present a first-principles study of exciton-phonon relaxation pathways in pentacene, a paradigmatic molecular crystal and optoelectronic semiconductor. We compute the momentum- and band-resolved exciton-phonon interactions, and use them to analyze key scattering channels. We find that both exciton intraband scattering and interband scattering to parity-forbidden dark states occur on the same ∼100 fs timescale as a direct consequence of the longitudinal-transverse splitting of the bright exciton band. Consequently, exciton-phonon scattering exists as a dominant nonradiative relaxation channel in pentacene. We further show how the propagation of an exciton wave packet is connected with crystal anisotropy, which gives rise to the longitudinal-transverse exciton splitting and concomitant anisotropic exciton and phonon dispersions. Our results provide a framework for understanding the role of exciton-phonon interactions in exciton nonradiative lifetimes in molecular crystals and beyond.
Collapse
Affiliation(s)
- Galit Cohen
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jonah B Haber
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jeffrey B Neaton
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| | - Diana Y Qiu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Sivan Refaely-Abramson
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Kumar S, Dunn IS, Deng S, Zhu T, Zhao Q, Williams OF, Tempelaar R, Huang L. Exciton annihilation in molecular aggregates suppressed through qu antum interference. Nat Chem 2023:10.1038/s41557-023-01233-x. [PMID: 37337112 DOI: 10.1038/s41557-023-01233-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Exciton-exciton annihilation (EEA), an important loss channel in optoelectronic devices and photosynthetic complexes, has conventionally been assumed to be an incoherent, diffusion-limited process. Here we challenge this assumption by experimentally demonstrating the ability to control EEA in molecular aggregates using the quantum phase relationships of excitons. We employed time-resolved photoluminescence microscopy to independently determine exciton diffusion constants and annihilation rates in two substituted perylene diimide aggregates featuring contrasting excitonic phase envelopes. Low-temperature EEA rates were found to differ by more than two orders of magnitude for the two compounds, despite comparable diffusion constants. Simulated rates based on a microscopic theory, in excellent agreement with experiments, rationalize this EEA behaviour based on quantum interference arising from the presence or absence of spatial phase oscillations of delocalized excitons. These results offer an approach for designing molecular materials using quantum interference where low annihilation can coexist with high exciton concentrations and mobilities.
Collapse
Affiliation(s)
- Sarath Kumar
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ian S Dunn
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Shibin Deng
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tong Zhu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Qiuchen Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Roel Tempelaar
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Murata Y, Tamai Y. Intrachain Exciton Motion Can Compete with Interchain Hopping in Conjugated Polymer Films with a Strong J-Aggregate Property. J Phys Chem Lett 2022; 13:2078-2083. [PMID: 35213154 DOI: 10.1021/acs.jpclett.2c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding exciton diffusion properties in organic semiconductor films is crucial for organic solar cells because excitons need to diffuse to an electron donor/acceptor interface to dissociate into charges. We previously found that singlet excitons generated in the thin films of a novel naphthobisoxadiazole-based low-bandgap polymer PNOz4T exhibit two-dimensional exciton diffusion characteristics along the backbone and π-stacking directions owing to the HJ-aggregate property of PNOz4T. However, the diffusion constants along these directions could not be determined owing to the difficulty of data analysis. Herein, we present a detailed analysis based on a simulated annealing metaheuristic. We found that intrachain exciton motion can be faster than interchain hopping. On the basis of temperature dependence measurements, we found that exciton diffusion is more favorable at lower temperatures because the coherent component partly contributes to exciton motion.
Collapse
Affiliation(s)
- Yasuhiro Murata
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto, 615-8510, Japan
| | - Yasunari Tamai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto, 615-8510, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
4
|
Altman AR, Refaely-Abramson S, da Jornada FH. Identifying Hidden Intracell Symmetries in Molecular Crystals and Their Impact for Multiexciton Generation. J Phys Chem Lett 2022; 13:747-753. [PMID: 35029407 DOI: 10.1021/acs.jpclett.1c03540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic molecular crystals are appealing for next-generation optoelectronic applications due to their multiexciton generation processes that can increase the efficiency of photovoltaic devices. However, a general understanding of how crystal structures affect these processes is lacking, requiring computationally demanding calculations for each material. Here we present an approach to understand and classify organic crystals and elucidate multiexciton processes. We show that organic crystals that are composed of two sublattices are well-approximated by effective fictitious systems of higher translational symmetry. Within this framework, we derive hidden selection rules in crystal pentacene and predict that the bulk polymorph supports fast Coulomb-mediated singlet fission with a transition rate about 2 orders of magnitude faster than that of the thin-film polymorph, a result confirmed with many-body perturbation theory calculations. Our approach is based on density-functional theory calculations and provides design principles for the experimental and computational discovery of new materials with tailored excitonic properties.
Collapse
Affiliation(s)
- Aaron R Altman
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Sivan Refaely-Abramson
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Felipe H da Jornada
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Lattice Vibrations and Time-Dependent Evolution of Local Phonon Modes during Exciton Formation in Conjugated Polymeric Molecules. Polymers (Basel) 2021; 13:polym13111724. [PMID: 34070250 PMCID: PMC8197373 DOI: 10.3390/polym13111724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Based on nonadiabatic molecular dynamics that integrate electronic transitions with the time-dependent phonon spectrum, this article provides a panoramic landscape of the dynamical process during the formation of photoinduced excitons in conjugated polymers. When external optical beam/pulses with intensities of 10 µJ/cm2 and 20 µJ/cm2 are utilized to excite a conjugated polymer, it is found that the electronic transition firstly triggers local lattice vibrations, which not only locally distort alternating bonds but change the phonon spectrum as well. Within the first 60 fs, the occurrence of local distortion of alternating bonds accompanies the localization of the excited-state’s electron. Up to 100 fs, both alternating bonds and the excited electronic state are well localized in the middle of the polymer chain. In the first ~200 fs, the strong lattice vibration makes a local phonon mode at 1097.7 cm−1 appear in the phonon spectrum. The change of electron states then induces the self-trapping effect to act on the following photoexcitation process of 1.2 ps. During the following relaxation of 1.0 ps, new local infrared phonon modes begin to occur. All of this, incorporated with the occurrence of local infrared phonon modes and localized electronic states at the end of the relaxation, results in completed exciton formation.
Collapse
|