1
|
Zhang BW, Fajer M, Chen W, Moraca F, Wang L. Leveraging the Thermodynamics of Protein Conformations in Drug Discovery. J Chem Inf Model 2025; 65:252-264. [PMID: 39681511 DOI: 10.1021/acs.jcim.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
As the name implies, structure-based drug design requires confidence in the holo complex structure. The ability to clarify which protein conformation to use when ambiguity arises would be incredibly useful. We present a large scale validation of the computational method Protein Reorganization Free Energy Perturbation (PReorg-FEP) and demonstrate its quantitative accuracy in selecting the correct protein conformation among candidate models in apo or ligand induced states for 14 different systems. These candidate conformations are pulled from various drug discovery related campaigns: cryptic conformations induced by novel hits in lead identification, binding site rearrangement during lead optimization, and conflicting structural biology models. We also show an example of a pH-dependent conformational change, relevant to protein design.
Collapse
Affiliation(s)
- Bin W Zhang
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Mikolai Fajer
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Wei Chen
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Francesca Moraca
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Lingle Wang
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| |
Collapse
|
2
|
Pala D, Clark DE. Caught between a ROCK and a hard place: current challenges in structure-based drug design. Drug Discov Today 2024; 29:104106. [PMID: 39029868 DOI: 10.1016/j.drudis.2024.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The discipline of structure-based drug design (SBDD) is several decades old and it is tempting to think that the proliferation of experimental structures for many drug targets might make computer-aided drug design (CADD) straightforward. However, this is far from true. In this review, we illustrate some of the challenges that CADD scientists face every day in their work, even now. We use Rho-associated protein kinase (ROCK), and public domain structures and data, as an example to illustrate some of the challenges we have experienced during our project targeting this protein. We hope that this will help to prevent unrealistic expectations of what CADD can accomplish and to educate non-CADD scientists regarding the challenges still facing their CADD colleagues.
Collapse
Affiliation(s)
- Daniele Pala
- Medicinal Chemistry and Drug Design Technologies Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - David E Clark
- Charles River, 6-9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, UK.
| |
Collapse
|
3
|
Sun Q, Biswas A, Lyumkis D, Levy R, Deng N. Elucidating the Molecular Determinants of the Binding Modes of a Third-Generation HIV-1 Integrase Strand Transfer Inhibitor: The Importance of Side Chain and Solvent Reorganization. Viruses 2024; 16:76. [PMID: 38257776 PMCID: PMC11154245 DOI: 10.3390/v16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The first- and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffolds, are promising candidates to combat drug-resistant viral variants. Among these novel INSTIs, compound 4f exhibits two distinct conformations when binding with intasomes from HIV-1 and the closely related prototype foamy virus (PFV) despite the high structural similarity of their INSTI binding pockets. The molecular mechanism and the key active site residues responsible for these differing binding modes in closely related intasomes remain elusive. To unravel the molecular determinants governing the two distinct binding modes, we applied a novel molecular dynamics-based free energy method that utilizes alchemical pathways to overcome the sampling challenges associated with transitioning between the two bound conformations of ligand 4f within the crowded environments of the INSTI binding pockets in these intasomes. The calculated conformational free energies successfully recapitulate the experimentally observed binding mode preferences in the two viral intasomes. Analysis of the simulated structures suggests that the observed binding mode preferences are caused by amino acid residue differences in both the front and the central catalytic sub-pocket of the INSTI binding site in HIV-1 and PFV. Additional free energy calculations on mutants of HIV-1 and PFV revealed that while both sub-pockets contribute to binding mode selection, the central sub-pocket plays a more important role. These results highlight the importance of both side chain and solvent reorganization, as well as the conformational entropy in determining the ligand binding mode, and will help inform the development of more effective INSTIs for combatting drug-resistant viral variants.
Collapse
Affiliation(s)
- Qinfang Sun
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (Q.S.); (R.L.)
| | - Avik Biswas
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (A.B.); (D.L.)
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (A.B.); (D.L.)
- Graduate Schools for Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronald Levy
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (Q.S.); (R.L.)
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
| |
Collapse
|
4
|
Sun Q, Biswas A, Lyumkis D, Levy R, Deng N. Elucidating the molecular determinants for binding modes of a third-generation HIV-1 integrase strand transfer inhibitor: Importance of side chain and solvent reorganization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569269. [PMID: 38077045 PMCID: PMC10705364 DOI: 10.1101/2023.11.29.569269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The first and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffold, are promising candidates to combat drug-resistant viral variants. Among these novel INSTIs, compound 4f exhibits two distinct conformations when binding to intasomes from HIV-1 and the closely related prototype foamy virus (PFV), despite the high structural similarity of their INSTI binding pockets. The molecular mechanism and the key active site residues responsible for these differing binding modes in closely related intasomes remain elusive. To unravel the molecular determinants governing the two distinct binding modes, we employ a novel molecular dynamics-based free energy approach that utilizes alchemical pathways to overcome the sampling challenges associated with transitioning between two ligand conformations within crowded environments along physical pathways. The calculated conformational free energies successfully recapitulate the experimentally observed binding mode preferences in the two viral intasomes. Analysis of the simulated structures suggests that the observed binding mode preferences are caused by amino acid residue differences in both the front and the central catalytic sub-pocket of the INSTI binding site in HIV-1 and PFV. Additional free energy calculations on mutants of HIV-1 and PFV revealed that while both sub-pockets contribute to the binding mode selection, the central sub-pocket plays a more important role. These results highlight the importance of both side chain and solvent reorganization, as well as the conformational entropy in determining the ligand binding mode and will help inform the development of more effective INSTIs for combatting drug-resistant viral variants.
Collapse
Affiliation(s)
- Qinfang Sun
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Avik Biswas
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037
- Department of Physics, University of California San Diego, La Jolla, CA, 92093
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037
- Graduate schools for Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Ronald Levy
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, NY10038
| |
Collapse
|
5
|
Wang T, Wang L, Zhang X, Shen C, Zhang O, Wang J, Wu J, Jin R, Zhou D, Chen S, Liu L, Wang X, Hsieh CY, Chen G, Pan P, Kang Y, Hou T. Comprehensive assessment of protein loop modeling programs on large-scale datasets: prediction accuracy and efficiency. Brief Bioinform 2023; 25:bbad486. [PMID: 38171930 PMCID: PMC10764206 DOI: 10.1093/bib/bbad486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Protein loops play a critical role in the dynamics of proteins and are essential for numerous biological functions, and various computational approaches to loop modeling have been proposed over the past decades. However, a comprehensive understanding of the strengths and weaknesses of each method is lacking. In this work, we constructed two high-quality datasets (i.e. the General dataset and the CASP dataset) and systematically evaluated the accuracy and efficiency of 13 commonly used loop modeling approaches from the perspective of loop lengths, protein classes and residue types. The results indicate that the knowledge-based method FREAD generally outperforms the other tested programs in most cases, but encountered challenges when predicting loops longer than 15 and 30 residues on the CASP and General datasets, respectively. The ab initio method Rosetta NGK demonstrated exceptional modeling accuracy for short loops with four to eight residues and achieved the highest success rate on the CASP dataset. The well-known AlphaFold2 and RoseTTAFold require more resources for better performance, but they exhibit promise for predicting loops longer than 16 and 30 residues in the CASP and General datasets. These observations can provide valuable insights for selecting suitable methods for specific loop modeling tasks and contribute to future advancements in the field.
Collapse
Affiliation(s)
- Tianyue Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Langcheng Wang
- Department of Pathology, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Xujun Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Odin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jike Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jialu Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ruofan Jin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Donghao Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Shicheng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Liwei Liu
- Advanced Computing and Storage Laboratory, Central Research Institute, 2012 Laboratories, Huawei Technologies Co., Ltd., Shenzhen 518129, Guangdong, China
| | - Xiaorui Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guangyong Chen
- Zhejiang Lab, Zhejiang University, Hangzhou 311121, Zhejiang, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
6
|
Geronimo I, De Vivo M. Alchemical Free-Energy Calculations of Watson-Crick and Hoogsteen Base Pairing Interconversion in DNA. J Chem Theory Comput 2022; 18:6966-6973. [PMID: 36201305 DOI: 10.1021/acs.jctc.2c00848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hoogsteen (HG) base pairs have a transient nature and can be structurally similar to Watson-Crick (WC) base pairs, making their occurrence and thermodynamic stability difficult to determine experimentally. Herein, we employed the restrain-free-energy perturbation-release (R-FEP-R) method to calculate the relative free energy of the WC and HG base pairing modes in isolated and bound DNA systems and predict the glycosyl torsion conformational preference of purine bases. Notably, this method does not require prior knowledge of the transition pathway between the two end states. Remarkably, relatively fast convergence was reached, with results in excellent agreement with experimental data for all the examined DNA systems. The R-REP-R method successfully determined the stability of HG base pairing and more generally, the conformational preference of purine bases, in these systems. Therefore, this computational approach can help to understand the dynamic equilibrium between the WC and HG base pairing modes in DNA.
Collapse
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|