1
|
Alomar SA, Gutiérrez-Arzaluz L, Nadinov I, He R, Wang X, Wang JX, Jia J, Shekhah O, Eddaoudi M, Alshareef HN, Schanze KS, Mohammed OF. Tunable Photoinduced Charge Transfer at the Interface between Benzoselenadiazole-Based MOF Linkers and Thermally Activated Delayed Fluorescence Chromophore. J Phys Chem B 2023; 127:1819-1827. [PMID: 36807993 PMCID: PMC9986871 DOI: 10.1021/acs.jpcb.2c08844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Indexed: 02/23/2023]
Abstract
Structural modifications to molecular systems that lead to the control of photon emission processes at the interfaces between photoactive materials play a key role in the development of fluorescence sensors, X-ray imaging scintillators, and organic light-emitting diodes (OLEDs). In this work, two donor-acceptor systems were used to explore and reveal the effects of slight changes in chemical structure on interfacial excited-state transfer processes. A thermally activated delayed fluorescence (TADF) molecule was chosen as the molecular acceptor. Meanwhile, two benzoselenadiazole-core MOF linker precursors, Ac-SDZ and SDZ, with the presence and absence of a C≡C bridge, respectively, were carefully chosen as energy and/or electron-donor moieties. We found that the SDZ -TADF donor-acceptor system exhibited efficient energy transfer, as evidenced by steady-state and time-resolved laser spectroscopy. Furthermore, our results demonstrated that the Ac-SDZ-TADF system exhibited both interfacial energy and electron transfer processes. Femtosecond-mid-IR (fs-mid-IR) transient absorption measurements revealed that the electron transfer process takes place on the picosecond timescale. Time-dependent density functional theory (TD-DFT) calculations confirmed that photoinduced electron transfer occurred in this system and demonstrated that it takes place from C≡C in Ac-SDZ to the central unit of the TADF molecule. This work provides a straightforward way to modulate and tune excited-state energy/charge transfer processes at donor-acceptor interfaces.
Collapse
Affiliation(s)
- Shorooq A. Alomar
- Advanced
Membranes and Porous Materials Center and KAUST Catalysis Center,
Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced
Membranes and Porous Materials Center and KAUST Catalysis Center,
Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Issatay Nadinov
- Advanced
Membranes and Porous Materials Center and KAUST Catalysis Center,
Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Materials
Science and Engineering, Division of Physical Sciences and Engineering
(PSE), King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
| | - Ru He
- Department
of Chemistry, University of Texas at San
Antonio, San Antonio, Texas 78249, United States
| | - Xiaodan Wang
- Department
of Chemistry, University of Texas at San
Antonio, San Antonio, Texas 78249, United States
| | - Jian-Xin Wang
- Advanced
Membranes and Porous Materials Center and KAUST Catalysis Center,
Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiangtao Jia
- Functional
Materials Design, Discovery and Development Research Group (FMD),
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional
Materials Design, Discovery and Development Research Group (FMD),
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional
Materials Design, Discovery and Development Research Group (FMD),
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N. Alshareef
- Materials
Science and Engineering, Division of Physical Sciences and Engineering
(PSE), King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
| | - Kirk S. Schanze
- Department
of Chemistry, University of Texas at San
Antonio, San Antonio, Texas 78249, United States
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center and KAUST Catalysis Center,
Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Haldar R, Ghosh A, Maji TK. Charge transfer in metal-organic frameworks. Chem Commun (Camb) 2023; 59:1569-1588. [PMID: 36655919 DOI: 10.1039/d2cc05522h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metal-organic frameworks (MOFs, also known as porous coordination polymers or PCPs) are a novel class of crystalline porous material. The tailorable porous structure, in terms of size, geometry and function, has attracted the attention of researchers across all disciplines of materials science. One of the many exciting aspects of MOFs is that through directional and reversible coordination bonding, organic linkers (chromophores with metal-coordinating functional groups) and metal ions (and clusters) can be spatially organized in a preconceived geometry. The well-defined spatial geometry of the metals and linkers is very advantageous for optoelectronic functions (solar cells, light-emitting diodes, photocatalysts) of the materials. This feature article evaluates the scope of charge transfer (CT) interactions in MOFs, involving the organic linkers and metal ion or cluster components. Irrespective of the type (size, shape, electronic property) of organic chromophores involved, MOFs provide an insightful path to design and make the CT process efficient. The selected examples of MOFs with CT characteristics do not only illustrate the design principles but render a pathway towards understanding the complex photophysical processes and implementing those for future optoelectronic and catalytic applications.
Collapse
Affiliation(s)
- Ritesh Haldar
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Hyderabad 500046, India.
| | - Adrija Ghosh
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India.
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India. .,Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
3
|
Ghosh R, Paesani F. Connecting the dots for fundamental understanding of structure-photophysics-property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chem Sci 2023; 14:1040-1064. [PMID: 36756323 PMCID: PMC9891456 DOI: 10.1039/d2sc03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
4
|
Wang JX, Yin J, Shekhah O, Bakr OM, Eddaoudi M, Mohammed OF. Energy Transfer in Metal-Organic Frameworks for Fluorescence Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9970-9986. [PMID: 35175725 PMCID: PMC8895374 DOI: 10.1021/acsami.1c24759] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The development of materials with outstanding performance for sensitive and selective detection of multiple analytes is essential for the development of human health and society. Luminescent metal-organic frameworks (LMOFs) have controllable surface and pore sizes and excellent optical properties. Therefore, a variety of LMOF-based sensors with diverse detection functions can be easily designed and applied. Furthermore, the introduction of energy transfer (ET) into LMOFs (ET-LMOFs) could provide a richer design concept and a much more sensitive and accurate sensing performance. In this review, we focus on the recent five years of advances in ET-LMOF-based sensing materials, with an emphasis on photochemical and photophysical mechanisms. We discuss in detail possible energy transfer processes within a MOF structure or between MOFs and guest materials. Finally, the possible sensing applications of the ET-LMOF-based sensors are highlighted.
Collapse
Affiliation(s)
- Jian-Xin Wang
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Feng X, Shang Y, Zhang K, Hong M, Li J, Xu H, Wang L, Li Z. In situ ligand-induced Ln-MOFs based on a chromophore moiety: white light emission and turn-on detection of trace antibiotics. CrystEngComm 2022. [DOI: 10.1039/d2ce00613h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Series novel 3D Ln-MOFs containing both carboxyphenyl and pyridinyl moieties have been constructed. Tb-MOF fluorescence turn-on sensor of levofloxacin solution with highly sensitive and excellent selective was achieved through d-PET approach.
Collapse
Affiliation(s)
- Xun Feng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022, P. R. China
| | - Yapei Shang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ka Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Manzhou Hong
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Junfeng Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022, P. R. China
| | - Hongdi Xu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022, P. R. China
| | - Liya Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471022, P. R. China
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473601, P. R. China
| | - Zhongjun Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Fiankor C, Nyakuchena J, Khoo RSH, Zhang X, Hu Y, Yang S, Huang J, Zhang J. Symmetry-Guided Synthesis of N,N'-Bicarbazole and Porphyrin-Based Mixed-Ligand Metal-Organic Frameworks: Light Harvesting and Energy Transfer. J Am Chem Soc 2021; 143:20411-20418. [PMID: 34797665 DOI: 10.1021/jacs.1c10291] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decades, many attempts have been made to mimic the energy transfer (EnT) in photosynthesis, a key process occurring in nature that is of fundamental significance in solar fuels and sustainable energy. Metal-organic frameworks (MOFs), an emerging class of porous crystalline materials self-assembled from organic linkers and metal or metal cluster nodes, offer an ideal platform for the exploration of directional EnT phenomena. However, placing energy donor and acceptor moieties within the same framework with an atomistic precision appears to be a major synthesis challenge. In this work, we report the design and synthesis of a highly porous and photoactive N,N'-bicarbazole- and porphyrin-based mixed-ligand MOF, namely, NPF-500-H2TCPP (NPF = Nebraska porous framework; H2TCPP = meso-tetrakis(4-carboxyphenyl)porphyrin), where the secondary ligand H2TCPP is incorporated precisely through the open metal sites of the equatorial plane of the octahedron cage resulting from the underlying (4,8) connected network of NPF-500. The efficient EnT process from N,N'-bicarbazole to porphyrin in NPF-500-H2TCPP was captured by time-resolved spectroscopy and exemplified by photocatalytic oxidation of thioanisole. These results demonstrate not only the capability of NPF-500 as the scaffold to precisely arrange the donor-acceptor assembly for the EnT process but also the potential to directly utilize the EnT process for photocatalytic applications.
Collapse
Affiliation(s)
- Christian Fiankor
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - James Nyakuchena
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Rebecca Shu Hui Khoo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xu Zhang
- Jiangsu Engineering Laboratory for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu 223300, China
| | - Yuchen Hu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Sizhuo Yang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jian Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|