1
|
Wach Q, Quick MT, Ayari S, Achtstein AW. Field-dependent THz transport nonlinearities in semiconductor nano structures. Phys Chem Chem Phys 2024; 26:13995-14005. [PMID: 38683165 DOI: 10.1039/d4cp00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Charge transport nonlinearities in semiconductor quantum dots and nanorods are studied. Using a density matrix formalism, we retrieve the field-dependent nonlinear mobility and show the possibility of intra-pulse gain. We further demonstrate that the dynamics of master equations can be captured in an analytical formula for the field-dependent charge carrier mobility, e.g. for two-level systems. This equation extends the linear response theory based Kubo-Greenwood result to nonlinear processes at elevated field strength, easily reached in THz transport spectroscopy. With these tools we analyze the field strength, chirp, temperature and dephasing dependence of the charge carrier mobility in the model system of CdSe quantum dots and wires. Stark broadening and Rabi splitting result in strong alterations of the mobility spectra, pronounced at low temperatures. The mobility spectra are strongly temperature and pulse shape dependent in the nonlinear regime. The findings are of immediate interest e.g. for nonlinear THz generation, conversion and amplification in 6G technology and nano electronics. Our results further enable experimentalists to fit and understand measured charge transport nonlinearities with analytical expressions and to design nanosystems with engineered material properties.
Collapse
Affiliation(s)
- Quentin Wach
- Institute of Optics and Atomic Physics, Technische Universität Berlin, 10623 Berlin, Germany
| | - Michael T Quick
- Institute of Optics and Atomic Physics, Technische Universität Berlin, 10623 Berlin, Germany
| | - Sabrine Ayari
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Alexander W Achtstein
- Institute of Optics and Atomic Physics, Technische Universität Berlin, 10623 Berlin, Germany
- Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
2
|
Abdullah A, Kulkarni MA, Thaalbi H, Tariq F, Ryu SW. Epitaxial growth of 1D GaN-based heterostructures on various substrates for photonic and energy applications. NANOSCALE ADVANCES 2023; 5:1023-1042. [PMID: 36798492 PMCID: PMC9926888 DOI: 10.1039/d2na00711h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
GaN is an important III-V semiconductor for a variety of applications owing to its large direct band gap. GaN nanowires (NWs) have demonstrated significant potential as critical building blocks for nanoelectronics and nanophotonic devices, as well as integrated nanosystems. We present a comprehensive analysis of the vapor-liquid-solid (VLS) as a general synthesis technique for NWs on a variety of substrates, the morphological and structural characterization, and applications of GaN NWs in piezoelectric nanogenerators, light-emitting diodes, and solar-driven water splitting. We begin by summarizing the overall VLS growth process of GaN NWs, followed by the growth of NWs on several substrates. Subsequently, we review the various uses of GaN NWs in depth.
Collapse
Affiliation(s)
- Ameer Abdullah
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
| | - Mandar A Kulkarni
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
| | - Hamza Thaalbi
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
| | - Fawad Tariq
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
| | - Sang-Wan Ryu
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
| |
Collapse
|
3
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Ningyuan Fu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Lina Makke
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
4
|
Quick MT, Ayari S, Owschimikow N, Jaziri S, Achtstein AW. THz mobility and polarizability: impact of transformation and dephasing on the spectral response of excitons in a 2D semiconductor. Phys Chem Chem Phys 2023; 25:3354-3360. [PMID: 36633188 DOI: 10.1039/d2cp03584g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We introduce a response theory based transformation for excitonic polarizability into mobility, which allows an in-depth analysis of optical pump-THz probe conductivity experiments, and compare the results with those of a conventional oscillator model. THz spectroscopy is of high interest e.g. for investigations in high bandwidth and low noise nanoelectronics or solar energy harvesting nanomaterials. In contrast to simple ω scaling of estimated static polarizability, suggested in the literature, an appropriate transformation of the spectral response into mobility can be achieved in principle forward and backward due to the presence of dephasing, as we show for the exemplary system of CdSe nanoplatelets. Common analysis approaches capture the excitonic properties only under specific conditions, and do not apply in many cases. We demonstrate that a thermal distribution of excitons and transitions between higher states in general have to be considered and that dephasing has to be taken into account for a proper transformation at all temperatures. The presented in-depth understanding of the exciton mobility in nanoparticles can help improve e.g. solar hydrogen generation, charge extraction efficiencies of solar cells, or light emission performance of LEDs.
Collapse
Affiliation(s)
- Michael T Quick
- Institute of Optics and Atomic Physics, Technische Universität Berlin, 10623, Berlin, Germany.
| | - Sabrine Ayari
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Nina Owschimikow
- Institute of Optics and Atomic Physics, Technische Universität Berlin, 10623, Berlin, Germany.
| | - Sihem Jaziri
- Laboratoire de Physique des Matériaux Structure et Propriétés, Faculté des Sciences de Tunis, Laboratoire de Physique de la Matière Condensée, Département de Physique, Université Tunis el Manar, Campus Universitaire 2092 Tunis, Tunisia.,Laboratoire de Physique des Materiaux, Faculte des Sciences de Bizerte, Universite de Carthage, Jarzouna, 7021, Tunisia
| | - Alexander W Achtstein
- Institute of Optics and Atomic Physics, Technische Universität Berlin, 10623, Berlin, Germany.
| |
Collapse
|
5
|
Achtstein AW, Owschimikow N, Quick MT. Population dependence of THz charge carrier mobility and non-Drude-like behavior in short semiconductor nanowires. NANOSCALE 2021; 14:19-25. [PMID: 34897357 DOI: 10.1039/d1nr06253k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We investigate THz radiation absorption by charge carriers, focusing on the mobility in nanorods and wires. We show that for short rods the mobility is limited by the high spacing of the charge carrier energy levels, while for longer wires (greater 25 nm) finite dephasing results in considerably higher low frequency mobility. Analyzing the length, temperature and population dependence, we demonstrate that, apart from the temperature dependent dephasing, the mobility becomes strongly charge carrier population dependent. The latter results in no simple linear relationship between carrier density and conductivity. Additionally their thermal distribution determines the mobility, measured in experiments. We further show that Drude or Plasmon models apply only for long wires at elevated temperatures, while for short length quantization results in considerable alterations. In contrast to those phenomenological models, i.e. a negative imaginary part of the frequency-dependent conductivity in a nanosystem can be understood microscopically. Based on the results, we develop guidelines to analyze 1D terahertz conductivity spectra. Our approach provides also a new tool to optimize the mobility by nanowire length as well as to analyze the dephasing, not by conventional wave mixing techniques, but by coherent optical pump-THz probe spectroscopy.
Collapse
Affiliation(s)
| | - Nina Owschimikow
- Technical University of Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| | - Michael T Quick
- Technical University of Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|